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Augmented reality (AR) seamlessly overlays virtual objects onto the real world, enabling an exciting new
range of applications. Multiple users view and interact with virtual objects, which are replicated and shown
on each user’s display. A key requirement of AR is that the replicas should be quickly updated and converge to
the same state; otherwise, users may have laggy or inconsistent views of the virtual object, which negatively
affects their experience. A second key requirement is that the movements of virtual objects in space should
preserve certain integrity properties either due to physical boundaries in the real world, or privacy and safety
preferences of the user. For example, a virtual cup should not sink into a table, or a private virtual whiteboard
should stay within an office. The challenge tackled in this paper is the coordination of virtual objects with low
latency, spatial integrity properties and convergence. We introduce “well-organized” replicated data types
that guarantee these two properties. Importantly, they capture a local notion of conflict that supports more
concurrency and lower latency. To implement well-organized virtual objects, we introduce a credit scheme
and replication protocol that further facilitate local execution, and prove the protocol’s correctness. Given
an AR environment, we automatically derive conflicting actions through constraint solving, and statically
instantiate the protocol to synthesize custom coordination. We evaluate our implementation, Hambazi, on
off-the-shelf Android AR devices and show a latency reduction of 30.5-88.4% and a location staleness reduction
of 35.6-75.6%, compared to three baselines, for varying numbers of devices, AR environments, request loads,
and network conditions.
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1 Introduction
Augmented reality (AR) is one of the key technologies driving the next generation of mobile
applications. AR allows users to view virtual objects overlaid on top of the real world, with
applications in entertainment (e.g., Pokemon Go), workspaces (e.g., Apple Vision Pro), education
(e.g., spatial understanding [1]), and public safety (e.g., firefighting [19]), as illustrated in Fig. 1.
Industry has made huge investments in the space, with Apple announcing its own AR headset in
June 2023. In multi-user AR applications,multiple users view and interact with the same set of virtual
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objects simultaneously. For example, two users could attempt to interact with a virtual cheese at
the same time, and move the cheese in opposite directions, as shown in Fig. 1b. User devices need
to coordinate on the position of the virtual objects, and then quickly render them for all users. The
replicas of a virtual object should eventually converge to the same position.

(a) Education [1]:

Users collaboratively

complete 3D puzzles.

(b) Fun: Users

simultaneously

move holograms.

(c) Public safety: Firefight-

ers move the virtual “exit”

sign for safe navigation.

Fig. 1. Examples of multiple AR users interacting with virtual objects.

Unfortunately, coordination
and communication delays
arise in practice, preventing
multiple users from quickly
observing updates to the vir-
tual objects. Glitches, jumps
and rollbacks can affect AR
user experience. In order to
provide the AR users with
the desirable quality-of-experience [4,
21], AR demands low latency
between the time a user interacts with a virtual object to the time it is updated on the display.
Further, a key twist arises from the AR context: virtual objects are overlaid onto the real world, and
should interact with the real world in physically meaningful ways. In particular, virtual objects
are expected to maintain an integrity property: they should never enter restricted zones. Examples
include physical boundaries (e.g., a virtual billiards ball should not enter a wall). Restriction zones
can be further imposed by the user or by the system, such as by user’s privacy policies (e.g., a
private virtual whiteboard should not be moved outside an office [82]), by safety and security
policies (e.g., a virtual object should not leave a user-drawn safe playing area [62]), or by reliability
policies (e.g., preventing occlusion of critical information in a dangerous area during human-robot
interactions [89]). These restriction zones could also be moving (e.g., a virtual object should not
occlude a pedestrian walking in the user’s field of view [50]).
Coordination for emerging user-centric applications [20] that satisfies all three requirements –

convergence on the position of a virtual object, while respecting the restricted zones, and doing
so with low latency – is challenging. ARCore (Google’s Android API for AR) records the state of
the AR session in a Firestore database [34, 35] and can provide optimistic concurrency control
wherein users read the current state, perform a computation and then submit a write. In the
interim, if another user made an update that invalidated the read values, the write is re-tried a
fixed number of times before failing. However, this approach incurs significant latency from two
sources: (a) communication latency to an edge/cloud server can be hundreds of milliseconds; (b)
when multiple users contend to update the same state, it leads to high failure rates and multiple
re-tries, increasing latency. Another approach is “netcode”, deployed by major game engines to
manage player positions, hit points, etc. [31, 58, 90, 91]. Essentially, users optimistically execute
their actions locally and then reconcile their actions with the server, and roll back if consistency
issues arise. The major issue with this approach is that rollback leads to poor user experience (e.g.,
the virtual billiards ball will retrace its path).
In this paper, we take a principled look at multi-user interactions with virtual objects in AR.

We study the following question: can we automatically construct protocols that coordinate
the interactions of multiple users on virtual objects with low-latency and convergence,
and without entering restricted zones and rollbacks? Our main design philosophy is hybrid
consistency [7–9, 26, 36, 40, 41, 51–55, 87], allowing local actions without coordination in order
to meet low latency goals, and coordinating when necessary in order to provide convergence
and integrity (i.e., avoiding restricted zones). We then introduce the notion of well-organized
replicated data types that guarantee convergence and integrity. Well-organization is inspired by
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well-coordination [40] and allows processes to make local updates without coordination wherever
possible. Although some users' views may be temporarily stale, they eventually converge. Compared
to well-coordination, well-organization introduces two new key ideas that reduce latency: the
notion of con�ict is de�ned locally considering the current state rather than globally for every
state, and it does not track and propagate dependencies.

To preserve integrity and convergence, well-organization requires certain conditions for the
execution and propagation of actions; in particular, con�icting actions should have the same
order across processes. We introducea credit scheme and replication protocolthat implements
well-organized replicated data types for AR applications, and prove that the implementation is
correct. Each action needs to acquire enough credit to prevent its con�icting actions. Importantly,
if the current user's process already has enough credit, it does not need to communicate with any
other users' processes to avoid con�icts, thus preserving integrity without global synchronization.
One challenge is that users can launch AR applications in arbitrary environments with unique
restricted zones. The protocol is parametric in terms of these con�icts. We formally de�ne con�icts,
automatically calculate con�icting actions using o�-the-shelf constraint solvers, and then statically
instantiate the protocol with the pre-computed con�icting actions. In other words, wesynthesize a
custom protocol for a given AR environment.

To evaluate our protocol, we implement it in a system calledHambazion Google ARCore Android
devices. We compareHambaziwith three baseline methods (well-coordination, netcode principles
from game design, and Google Firestore) and demonstrate up to 88.4% reduction in average latency,
and 75.6% reduction in location staleness. In summary, the main contributions of this paper are:

� Problem formulation of spatial coordination of multi-user AR applications.

� Well-organized replicated data types that guarantee convergence and integrity (Ÿ 3).

� Spatial coordination protocol that implements well-organization without synchronization, with
a fault tolerance mechanism, and proof of correctness (Ÿ 4).

� Implementation ofHambazithat synthesizes correct-by-construction coordination for given
AR environments, and its empirical evaluation on Android devices (Ÿ 5).

Next, we start with an overview with an example and high-level intuitions.

2 Overview

Multi-user AR preliminaries. Consider a multi-user AR application that keeps the current
location ; of a virtual object. For example, Fig. 2a shows a virtual ball on a real world billiards table.
The spatial integrity propertyI for the location of the virtual object is to stay within an area� , and
not enter a restricted zone' . In our example in Fig. 2a,� is the whole rectangular area, and' is
the red restricted zone in the right-bottom corner. A user can call the methodmove¹0º at a process
to move the object, which is communicated to the other processes. The action0 has a direction3
and magnitude< where the directions areD = f - ¸ – - � – . ¸ – . � g, corresponding to right, left, up,
and down respectively. (Our experiments in Ÿ 5 consider more general 3D use-cases.) (When clear
from the context, we use method �call� and �action� interchangeably.) The replicated object should
preserve the above integrity property, and the states of all processes should eventually converge.

Con�icting actions and well-organization. Consider the example execution in Fig. 2a.
Process?1 (blue color) executesmove¹01º which pushes the AR object to the right. The callmove¹01º
is permissible; the resulting locationmove¹01º¹;º satis�es the integrity property as it is within�
and outside of' . Simultaneously, process?2 (purple color) executes the movemove¹02º without
?1's knowledge, pushing the AR object downwards. From?2's point of view,02 is also permissible.
Now, if move¹01º propagates to process?2 and is executed there, the resulting �nal location
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move¹01º¹move¹02º¹;ºº is in the restricted zone' , and thus, violates the integrity property. This is
an example of what we call apermissible-right con�ictof themovemethod with itself: as Fig. 2b
(bottom diagram) shows, at a location;, the method callmove¹01º is permissible; however, when it
moves to the right ofmove¹02º, it is not permissible anymore,i.e.,violates integrity (:I ). As Fig. 2b
shows (top diagram), starting from the pre-state location;0, whenmove¹01º moves to the right of
move¹02º, it stays permissible,i.e.,preserves integrity (I ).

(a) Conflicting actions.

(b) At ;0, 01 permissible-right commutes with
02. At ;, 01 permissible-right conflicts with
02.

Fig. 2. Conflicting actions in an AR applica-
tion. The integrity property requires the ball
to not enter the red area. At;, action 01 is
not right-commutative with 02: if 01 occurs
a�er 02, the ball enters the red area.

To coordinate replicated virtual objects, we propose
a new hybrid consistency model calledwell-organization
that builds on prior work on well-coordination [40],
with key di�erences. Well-coordination requires con-
�icting calls to be synchronized with each other (using
a total order broadcast) while other calls can proceed
without synchronization. However, well-coordination
is overly conservative in its notion of con�ict. In brief,
well-coordination de�nes con�ict globally no matter the
state: if there existsany pre-state� where a call21
permissible-right con�icts with another call22, then21
con�icts with 22. In the example above, at the initial
pre-state;, the two callsmove¹01º andmove¹02º con�ict.
Thus, according to well-coordination, they are consid-
ered con�icting globally in the application. This leaves no
room for concurrency between them (even at pre-state;0);
they should have the same order across all processes. In
contrast to well-coordination, in this work, we observe
that from a pre-state to another, the set of con�icting
calls can be di�erent, and introduce well-organization
that de�nes the notion of con�ict locally for each pre-
state. In the example in Fig. 2a, starting from the higher
pre-state;0, if move¹01º propagates to process?2 and
moves right to aftermove¹02º, it still satis�es integrity
(I ). Thus, at the pre-state;0, move¹01º does not con�ict
with move¹02º, and processes?1 and?2 can executemove¹01º andmove¹02º concurrently. There-
fore, well-organization supports more concurrency that leads to lower latency. We formally de�ne
well-organization with this notion of local con�icts, and further a new treatment of dependencies
in Ÿ 3, and prove that it guarantees integrity and convergence.

Coordination. Con�icting actions should have the same order across all processes. This is
often achieved by broadcasting con�icting actions to a total-order broadcast instance. In contrast,
Hambaziavoids coordination and thus reduces latency. It allows processes to execute even con-
�icting actions locally wherever possible. We propose a credit scheme where each dimension has a
total amount of credit corresponding to its length in the boundary� . For example, in Fig. 2a,�
has width 10 units, and there are a total of10credits across the- ¸ (right) and- � (left) directions.
The ownership of credits is equally distributed between processes. A process can transfer credits
to another. If a process owns the required credit for an action, it can take the action locally, and
simply propagate its update to other processes. For example, in Fig. 2a, a process seeking to move
the virtual object right by 7 units must have at least 7- ¸ (right) credits available. Moving in a
direction spends credit in that direction, and yields credit in the opposite direction.

Bounded counters [8, 10] similarly escrow values at processes, but their naive application cannot
solve the spatial coordination problem. This is because the integrity property of not entering
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restriction zones is on the values of all dimensions, and cannot be stated asindependentinvariants
on each dimension. For example, in Fig. 2a, the constraint is thatG5 2 when H5 4, andG5 10
when H7 4. The constraints onGandHare coupled, and a single bound onG, and a single bound
on Hwould fail to capture it. Preserving numeric invariants in a multi-dimensional space is more
involved: actions in one dimension can con�ict not only with other actions in the same dimension
but also actions of other dimensions. In Fig. 2a, we saw that, at;, 01 in direction - ¸ (right) by
process?1 permissible-right con�icts with orthogonal. � (down) actions such as02 by process
?2. Our key coordination idea is to request and hold su�cient credits to prevent the execution of
con�icting actions. Thus, before?1 takes action01 (blue color), it gathers and keeps 4. � credits out
of a total of 7 available at that location;. That prevents?2 (or any other process) from concurrently
making the downward action02 that needs 4. � credits. Once?1 is done taking action01, it can
release those down credits back to other processes. We present the complete protocol and prove
that it implements well-organization in Ÿ 4.

We formally de�ne con�icts, and given an AR environment, use constraint solvers to statically
determine for each location the set of con�icting actions, and the number of credits that should be
acquired in each direction to prevent them. The protocol is parametric and is statically instantiated
with the solver results to synthesize e�cient protocols for the given AR environments.

3 Well-Organized Replicated Data Types

> B h� –I –D B 3–@B 3i Object
� : � State
I Invariant (Integrity)
D : * Update Method
@ : & Query Method
3 : � G–� • 4 De�nition
4 Expression
E : + Value
? : % Process or Replica
A : ' Request Identi�er

2 : � : D¹EºA
? Update Method Call

@¹Eº Query Method Call
� B Call ¹?– 2º Label

j Prop¹?– 2º
j ¹?– @¹Eºº

� B � � Trace

Fig. 3. Syntax

In this section, we introduce well-organized repli-
cated data types. Well-organization is inspired
by well-coordination with two novelties. Firstly,
in contrast to well-coordination that requires
invariant-commutativity globally for all possible
pre-states where a call is being executed, well-
organization requires it locally only for the current
pre-state. This subtle di�erence allows more con-
currency under well-organization. Secondly, we
observe that, interestingly, certain checks in well-
coordination that track and propagate dependen-
cies are in fact unnecessary. Well-organization pro-
vides the same guarantees of convergence and in-
tegrity more e�ciently.

We �rst present how an object data type, includ-
ing its integrity properties, can be simply speci�ed.
We then present the core operational semantics
for well-organized replicated data types, and prove
that it guarantees integrity and convergence. This abstract semantics will serve as the speci�cation
for our AR replication protocols in the following section (Ÿ 4).

3.1 Replicated Data Types

In this subsection, we adopt and extend basic de�nitions from well-coordination [40] that we will
use later for the semantics of well-organization.

Data Types. As Fig. 3 shows, a class of objects is a tupleh� –I –D B 3–@B 3i that de�nes
the state type� , the invariant (or integrity property)I on the state, and the de�nitions of the
update methodsDand query methods@. The invariant (or integrity)I is a predicate on the state
(e.g.,non-negative balance for a bank account). For example,I¹ � º states that the invariantI holds
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for the state� . The de�nition of an update methodD is a function from the parameter and the
pre-state� to the post-state. An update call2 is an update methodDapplied to an argument value
E. Two calls2 and20 can be composed2 � 20 with the standard function composition operator� .
Similarly, the de�nition of a query method is a function from the parameter and the pre-state�
to the return value. The object is replicated on the set of processes%. Clients can request update
callsD¹Eº or query calls@¹Eº at every process?, and processes coordinate these calls. Calls have
unique request identi�ersA. An update call is decorated with the issuing process? and the request
identi�er A. (We omit these decorations when they are not needed or are evident from the context.)
A label� for a call request contains the pair of the issuing process, and an update or query call, and
a trace� is a sequence of labels.

ss : %7! � Replicated State
xs : %7! List¹� º Replicated Execution
, B hss–xsi World

, 0 B h»? 7! � 0¼?2%–»? 7! ;¼?2%i Initial World

Fig. 4. Replicated State

Replicated State. The state of the
given object is replicated across processes,
as shown in Fig. 4. The replicated statessis
a mapping from each process? to its state
� . The execution historyGof a process is
modeled as a sequence of calls. Since query
calls do not mutate the state, an execution
history only keeps update calls. We write2 2 Gto denote that the call2 is in the historyG. The
applicationG¹� º of a historyGto a state� is the application of the composition of the sequence of
calls ofGto � . Unique identi�ers make histories isograms,i.e.,strings that contain no repeating
occurrence of the alphabet. An execution historyx de�nes a total order on its calls: we write2 � x 20

if the call 2 precedes the call20 in the execution historyx. A replicated executionxsis a mapping
from each process to its execution history. The state, of our operational semantics is the pair
of the replicated statessand the replicated executionxs. In the initial state, 0, the state of all
processes is the same state� 0 (which satis�es the invariantI ), and their histories are empty.

Coordination Conditions. We now de�ne the coordination conditions in steps. For the sake
of brevity, we elide the de�nition environments.

State-con�ict. We say that a replicated execution is convergent if all processes store the same
state, after all calls are propagated to all processes. Consider a replicated set. As shown in Fig. 6b,
if two processes execute an add call2 and a remove call20 for the same element with di�erent
orders, then their states can diverge. We say that two method calls21 and22 S-commute, written
as 21 43S 22, if 21 � 22 = 22 � 21. Otherwise, theyS-con�ict, written as 21 34S 22, and need to
synchronize with each other. An object isS-commutative if all pairs of calls on itS-commute.

Integrity and Permissibility.The state of the object is expected to maintain its integrity (i.e.,
satisfy the invariant). For example, the balance of an account is expected to stay non-negative.
The body of each method can rely on the invariant in the pre-state. It is then expected to preserve
the invariant in its post-state. The notion ofpermissibilityrequires the invariant to hold in the
post-state: we say that a method call2 is permissible in a state� , written asP¹ � – 2º, if I¹ 2¹� ºº.
(An impermissible call should not be executed; it should be either rejected, or retried later.) In the
execution history of a process, the post-state of a call is the pre-state of the next call. The initial
state� 0 is assumed to satisfy the invariant. Therefore, since every call is permissible in its pre-state,
then by induction, every call enjoys integrity in its pre-state. Permissibility leads to integrity. Thus,
our next de�nitions are based on permissibility.

Invariant-su�ciency. There are calls that are always permissible as far as they are applied to
a state that has integrity. For example, adepositcall never overdrafts the account. Thus, in order
to keep them permissible when they are propagated to another process, it is su�cient to execute
them on a pre-state that has integrity. We say that a call2 is invariant-su�cient if for every state � ,
if I¹ � º then P¹ � – 2º.
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Permissible-Right-Commutativity.However, not all calls are invariant-su�cient. For example,
consider an account with balance state1. Consider the execution in Fig. 6b. Awithdraw¹1•2º
call 2 is permissible in process? but is impermissible in process?0 where it is executed after a
racingwithdraw¹1º call 20 that depletes the balance. In the process?0, 2 is pushed to the right of
20. However, if2 is withdraw¹1•2º, and20 is withdraw¹1•2º, then 2 will stay permissible in the
other process when it is executed after20. Similarly, if awithdraw¹0º call 2 is permissible with a
balance1, then it will stay permissible in the other process when it is executed after any racing
deposit¹00º call 20. A call 2 P -R-commutes with another20 at a state� at the pre-state� , written
as2 3�

P 20, if at the pre-state� , permissibility of2 holds even after it is pushed right after20; more
precisely, ifP¹ � – 2º then P¹20¹� º– 2º. For example, thewithdraw¹1•2º call P -R-commutes with the
withdraw¹1•2º call at the balance1. A call 2 P -R-commutes with another20, written as23P 20, if
it does so for every pre-state� . A withdraw¹0º call P -R-commutes with adeposit¹00º call.

Invariant-con�ict. We say that2 I -commutes with20 at a pre-state� , written as23�
I 20, if 2 is

invariant-su�cient, or if 2 3�
P 20. For example, adepositcall I -commutes with any other call at

any balance, and thewithdraw¹1•2º call I -commutes with thewithdraw¹1•2º call at the balance1.
Otherwise,2 I -con�icts with 20 at � . For example, thewithdraw¹1•2º call I -con�icts with the
withdraw¹1º at the balance1. A call 2 I -commutes with another20 written as 23I 20, if it does so
for every pre-state� . For example, adepositcall I -commutes with any other call. Otherwise,2
I -con�icts with 20. For example, awithdraw call I -con�icts with a withdraw call.

Con�ict. We say that two calls2 and20 commute, written as24320, if they bothS-commute
andI -commute with each other. Otherwise, we say that theycon�ict written as2 3420. A call is
con�ict-free if it does not con�ict with any other call. For example, adepositcall is con�ict-free.

Permissible-Left-Commutativity.There are calls that are dependent on their preceding calls to
preserve the invariant. For example, consider Fig. 6e. Thewithdraw call 2 at ?0 is dependent on the
money deposited by a precedingdepositcall 20; when thewithdraw call 2 propagates to process?,
it arrives before thedepositcall 20, and it overdrafts. The call2 is e�ectively moved to the left of20.
A call 20 P -L-commutes with a call2, written as204P 2, if permissibility of 20 holds even if it is
moved left before2; more precisely, for every state� , if 20 is permissible in the post-state of the
call 2 on � , i.e., P¹2¹� º– 20º, then20 is permissible in� , as well,i.e., P¹ � – 20º. For example, adeposit
call P -L-commutes with awithdraw call.

Dependency.A call 20 is independent of2, written as20 ?? 2, if 20 is invariant-su�cient, or 204P 2.
Otherwise,20 is dependent on2, written as20 6?? 2. If 2 is executed before20 in the issuing process
of 20, and20 6?? 2, then20 can become impermissible in another process if2 is not already executed
in that process. For example, adepositcall is independent of awithdraw call, but awithdraw call is
dependent on adepositcall.

3.2 Semantics

The operational semantics of well-organized replicated data types is presented in Fig. 5. It presents
the rulesCall to execute an update call locally,Prop to propagate calls to other processes, and
�ery to execute a query call. We will prove that the semantics guarantees convergence and
integrity.

As the label captures, the ruleCall accepts an update method call2at the process?, and executes
it locally. The call2 = D¹EºA

? is decorated with the identi�erAand the issuing process?. The rule
�rst checks that the call2 is locally permissibleP¹ � – 2º in the current state� : if 2does not preserve
the invariant, it is not accepted. The application can either cancel such a call or retry it later. In
order to synchronize state-con�icts, the rule then checks a condition calledCallSComm. Consider
Fig. 6.(a). If the current process? has not executed a call20 that another process?0 has executed,
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Call
2 = D¹EºA

? P¹ � – 2º
CallSComm¹xs– ?– 2º

xs0 = xs»? 7! ¹ xs¹?º ::: 2º¼
CallIComm¹xs0– 2º

� 0 = D¹Eº¹� º

hss»? 7! � ¼–xsi
Call ¹?– 2º
��������!

hss»? 7! � 0¼–xs0i

Prop
2 = D¹EºA

?0 2 2 xs¹?0º nxs¹?º
P¹ � – 2º

PropSComm¹xs– ?0– ?– 2º
xs0 = xs»? 7! ¹ xs¹?º ::: 2º¼

� 0 = D¹Eº¹� º

hss»? 7! � ¼–xsi
Prop¹?– 2º
��������!

hss»? 7! � 0¼–xs0i

�ery
E0 = @¹Eº¹� º

hss»? 7! � ¼–_i
?– @¹Eº:E0

�������!
hss»? 7! � ¼–_i

CallSComm¹xs– ?– 2º B 8?0– 20•
20 2 xs¹?0º ^ 20 8 xs¹?º ! 243S 20

PropSComm¹xs– ?0– ?– 2º B 820•
20 � xs¹?0º 2 ^ 20 8 xs¹?º ! 243S 20

Pending¹xsº B
xsn \ ? xs¹?º

CallIComm¹xs– 2º B
82 = D¹Eº? 2 Pending¹xsº•
PRCommAll¹xs– ?– 2º

PRCommAll¹xs– ?– 2º B
let GB pre¹xs¹?º– 2º–� B G¹� 0º in
8?0• 28 xs¹?0º !
8� � xsn ¹xs¹?0º [ G::: 2º• 820 2 compositions¹� º•
2 3�

I ¹xs¹?0º n Gº � 20

Fig. 5. Well-organization semantics. The append operation on lists is wri�en as:::. For historiesxsand history
G, we li� set operators to histories. For example,xsn Gis the set of calls inxsbut not in G. For a historyG
and a call2 in G, pre¹G– 2º is the prefix ofGbefore2. For a set of calls� , compositions¹� º is the set of all
(sequential) compositions of� .

then 2 and20 should state-commute. Consider when each of the two calls propagate to the other
process as shown in Fig. 6.(b). If they state-commute, then the two processes converge; otherwise
they can diverge. Therefore, if the two calls state-con�ict, the current process? should wait for
20 before executing2. Thus, as shown in Fig. 6.(c), when2 is propagated to?, the two processes
converge. The ruleCall also requires the conditionCallICommthat we describe below. If the
conditions hold, the new call2 is appended to the execution historyxs¹?º of the current process?,
and the statess¹?º of ? is updated to the result of applying the callD¹Eº to the current state� of ?.

The ruleProp propagates a call2 = D¹EºA
?0 (from a process?0) to the current process?. The

call 2 is in the history of ?0 but not yet in the history of?. The rule checks a condition called
PropSComm. Consider Fig. 6.(d). It checks that if there is a call20 that is executed before2 in the
other process?0, but is not executed in the current process?, then the two calls2 and20 should
state-commute. Consider Fig. 6.(e), where20 propagates to? after 2. If the two calls state-commute,
the two processes converge; otherwise, they can diverge. If the two calls state-con�ict, the current
process? should wait to execute20 before2. As Fig. 6.(f) shows, the two processes execute the two
calls in the same order, and converge. The rule further checks that the call2 is permissibleP¹ � – 2º
in the current state� . If the conditions hold, the call is locally applied at the current process?.

Let us now consider the conditionCallICommof the Call rule. Consider the execution shown
in Fig. 7.(a) where the new call2 is being executed. As we saw, the ruleCall checks that2 is
permissible at the issuing process?. The question is whether2 will be eventually permissible at?0,
and delivered there as well. The conditionCallICommleads to this property. Let us see how this
condition supports permissibility of2 at ?0. Consider the calls that? has already executed; in our
example, these calls are21 and22. We move these calls to the left of?0 in the same order as?. (By
induction, they will be eventually propagated and executed at?0.) We also move the calls that?0

has executed but? has not, to the right of?0. In our example, these calls are20
1 and20

2. Consider
the calls21 and20

1. When20
1 is executed at?0, the call21 was already executed at? but not at?0.

Therefore, by the state-commutativity conditions above, they can commute in?0 without changing
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(a) (b) (c)

(d) (e) (f)

Fig. 6. State-Commutativity

(a)
(b) (c) (d)

Fig. 7. Invariant-Commutativity

the post-state. The histories resulting from this commute are shown in Fig. 7.(b). (We elide the
process?00and the message passing arrows.) Similarly, the calls21 and22 have di�erent orders in
the two processes? and?0. Therefore, they can commute in?0 without changing the post-state.
The histories resulting from this commute (and the execution of2 at ?0) are shown in Fig. 7.(c). In
this execution, the calls before the new call2 in ? are21 and22. These calls now have moved to the
left in ?0, where they have the same order as?. Let � be the post-state of the composition of21
and22 at both? and?0. We know that2 is permissible at the issuing process? at its pre-state� .
Therefore,2 is permissible after the two calls21 and22 at ?0 as well. For2 to be permissible in?0, it
should be invariant-commutative with respect to the composition of20

1 and20
2. Let the composition

of 20
1 and20

2 be20 = 20
1 � 20

2. Starting from� , the call2 should be invariant-commutative with20

i.e.,2 3�
I 20. More generally, when2 is issued, letGbe the current historyxs? of ?. Consider the

process?0. The sequence of calls that?0 has already executed except calls inGis xs¹?0º n G. Let �
be the set of issued calls that are not executed at?0 yet. When2 arrives at?0, the process?0 may
have further executed any subset of� in any order. Thus,2 should be invariant-commutative with
xs¹?0º nG, and then any composition20 of any subset� of � . This is the conditionPRCommAllfor
the pending call2 itself that CallICommrequires.

CallICommfurther requires the conditionPRCommAllfor the other pending calls. Let us consider
how this condition supports permissibility of2 at ?0. The set of calls� above are already issued
when 2 is being executed at?. What about calls that are issued after2 is executed at?, and before
2 arrives at?0? For example, consider Fig. 7.(d). The call20

3 is executed at process?0 after 2 is
executed at? but before2 is propagated from? to ?0. The call2 should now invariant-commute
with 20

1 � 20
2 � 20

3. Consider when the ruleCall is executing the call20
3 at ?0. The call2 is still

pending. The ruleCall makes sure that after the call20
3 is added to?0, the conditionPRCommAll

is maintained for the pending call2. Thus, when the call2 propagates to?0, it can stay permissible
after 20

1, 20
2 and20

3.
Finally, the rule�ery executes a query call@¹Eº at a process?. The return valueE0 is the result

of applying the call to the current state� of ?.
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