33RD USENIX SECURITY SYMPOSIUM

That Doesn't Go There: Attacks on Shared State in Multi-User Augmented Reality Applications

Carter Slocum^{1*}, Yicheng Zhang^{1*}, Erfan Shayegani¹, <u>Pedram Zaree</u>¹,

Nael Abu-Ghazaleh¹, Jiasi Chen²

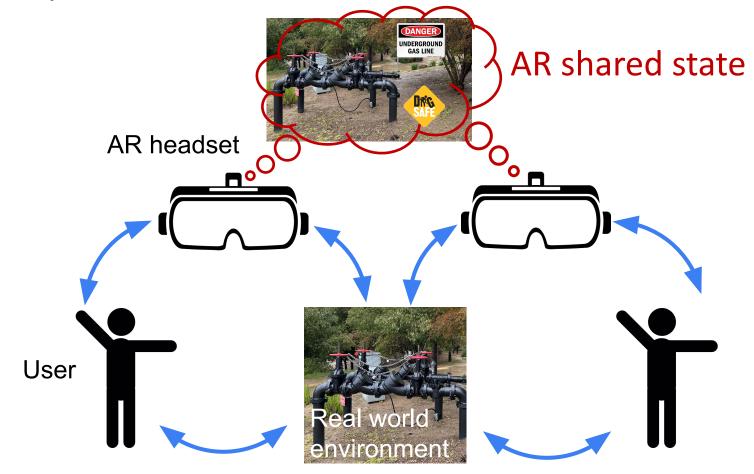
yzhan846@ucr.edu

¹University of California, Riverside ²University of Michigan *Equal contribution

Multi-user augmented reality apps

 A growing number of AR applications facilitate multi-user interactions with shared holograms

These applications are supported by major industry players



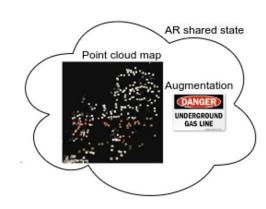
What new security risks arise for multi-user AR?

- AR devices sense the real world to create a shared AR experience
 - → This exposes new attack surfaces!

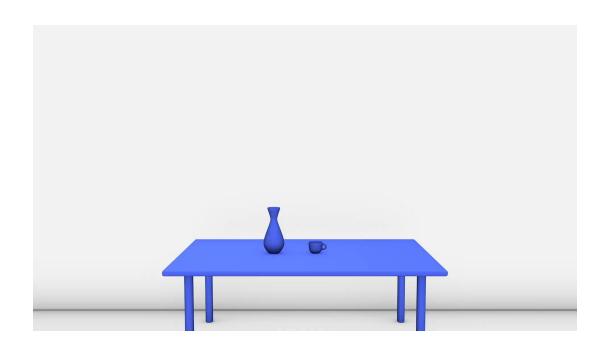
Outline

• Background: "Shared State" in Augmented Reality.

• Threat Model.

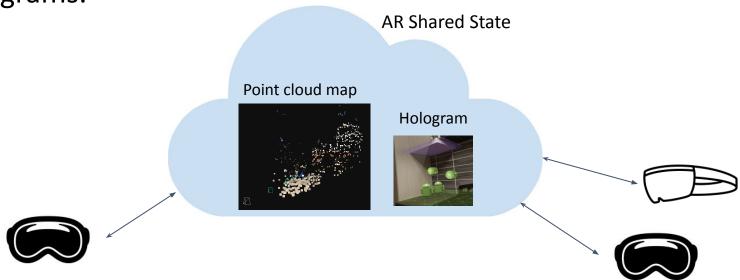

• Three Scenarios of Attacks.

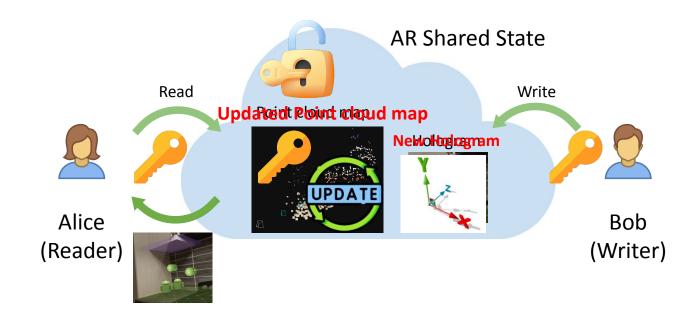
• Mitigation.



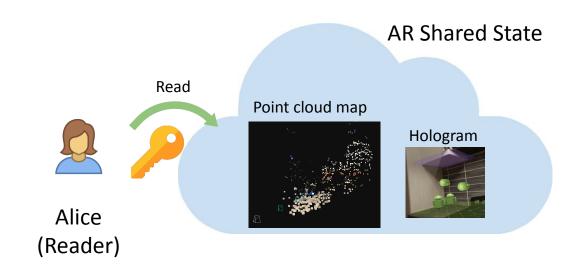
Background on multi-user AR

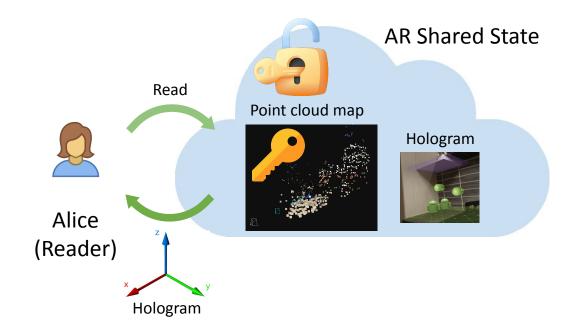
AR devices read/write to a shared state in order to view holograms

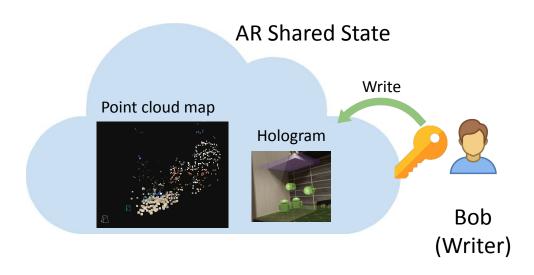


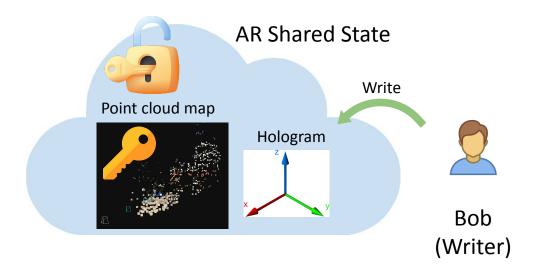

What if an attacker poisons the shared state?

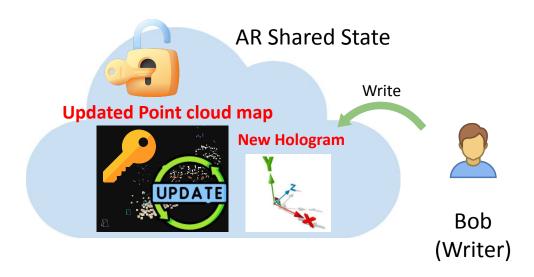
What is "Shared State" in augmented reality?


- Shared State: A collective set of information necessary for enabling interactive and consistent experiences among multiple users.
- Shared State contains:
 - Visual feature map of real world (point cloud map).
 - Holograms.


- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor


- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor

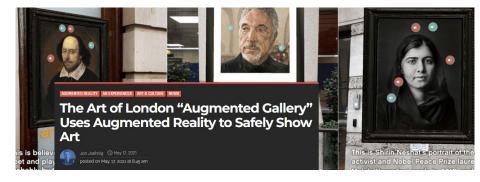

- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor


- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor

- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor

- Read and write operations
 - Key = real-world environment (point cloud, IMU, GPS)
 - Value = hologram
- Examples
 - Google ARCore: hostCloudAnchor, resolveCloudAnchor

AR Shared State Taxonomy


- We examined commercial multi-user AR frameworks
- Propose the following taxonomy
 - Local: small local areas (e.g., indoor room)
 - Global: outdoor, world-scale (e.g., Pokemon Go)

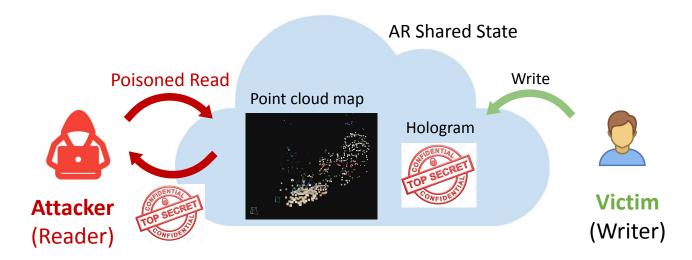
		Non-curated		Curated	
G	Local	Scenario A: Cloud		Commercial scenario	
520		Anchor		not found.	
ARCore		Keys: camera, IMU		Keys: camera, IMU	
		Attacks: read, write		Attacks: read	
	Global	Scenario C: Mapillary		Scenario B: Geospatial	ADC.
G				Anchor	ARCore
		Keys: camera, IMU,	GPS	Keys: camera, IMU, GPS	Geospatial API
		Attacks: write		Attacks: read	Challenge

AR Shared State Taxonomy

- Curated Shared State.
 - Curated maps are constructed by "curators".
 - Only curator can write in shared state.
 - But non-curator can read from shared state.

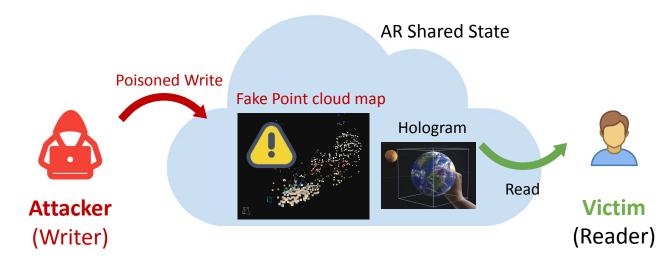
Example of curated AR Shared State: Augmented art gallery

- Non-curated Shared State.
 - All users are allowed to Read and Write in shared state.


	Non-curated	Curated	
	Scenario A: Cloud	Commercial scenario	
Local	Anchor	not found.	
	Keys: camera, IMU	Keys: camera, IMU	
	Attacks: read, write	Attacks: read	
Global	Saanania C. Manillany	Scenario B: Geospatial	
	Scenario C: Mapillary	Anchor	
	Keys: camera, IMU, GPS	Keys: camera, IMU, GPS	
	Attacks: write	Attacks: read	

Example of non-curated AR Shared State: On-the-fly game

Threat model: Read attack


- An attacker participates in a multi-user AR application
 - Uses an <u>unmodified</u> AR application to access shared state
 - As a regular user, no special permissions
- Read attack:

Attacker extracts sensitive information stored within the shared state created by victim.

Threat model: Write attack

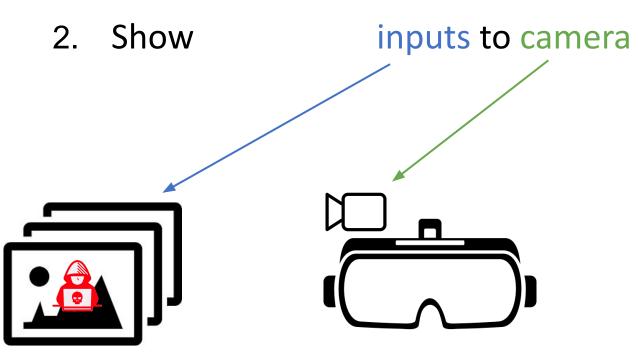
- Same threat model as Read attack
- Write attack:

Attacker manipulates shared state to deceive subsequent victim user!

Three Attack Scenarios

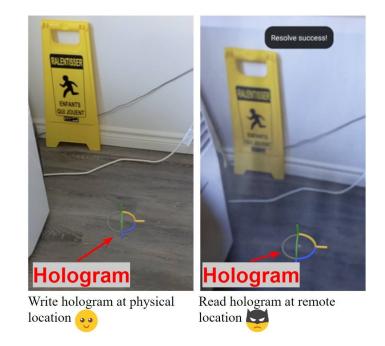
- Scenario A: Local, Non-Curated Shared State.
 - Platform: Google's Cloud Anchor API.
 - Attacker can read or write.
- Scenario B: Global, Curated Shared State.
 - Platform: Google's Geospatial API.
 - Attacker can only read.
- Scenario C: Global, Non-Curated Shared State .
 - Platform: Mapillary.
 - Attacker can read or write.

	Non-curated	Curated
Local	Scenario A: Cloud Anchor Keys: camera, IMU Attacks: read, write	Commercial scenario not found. Keys: camera, IMU Attacks: read
Global	Scenario C: Mapillary Keys: camera, IMU, GPS Attacks: write	Scenario B: Geospatial Anchor Keys: camera, IMU, GPS Attacks: read

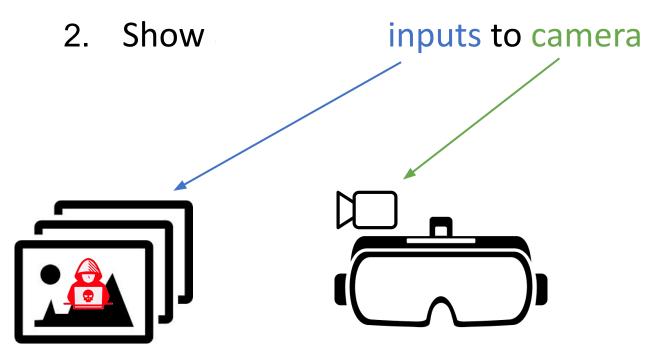


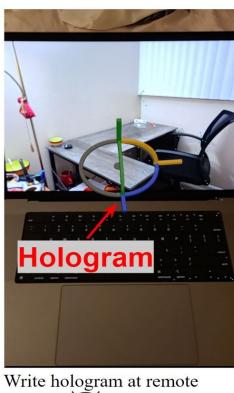
Scenario A: Remote read attack

1. Attacker has control of own device



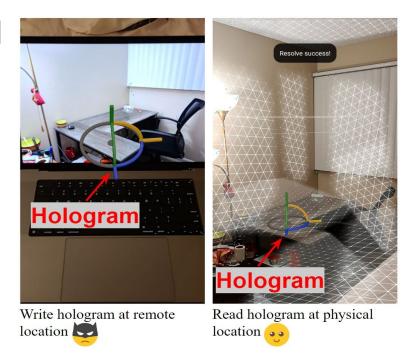
View hologram at physical location ...


Scenario A: Remote read attack

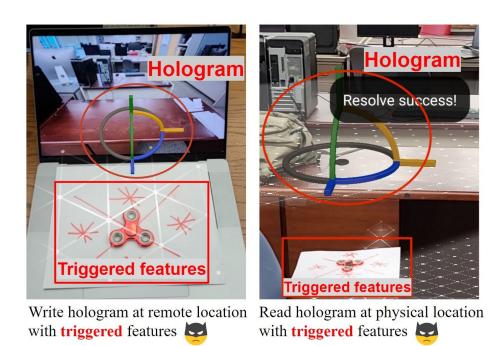

- Remote Read Attack: an attacker *Read* a hologram from <u>a remote</u> <u>location</u>.
- Attacker deceive Cloud Anchor API by fake camera/IMU input.

Scenario A: Remote write attack

1. Attacker has control of own device



Write hologram at remote location

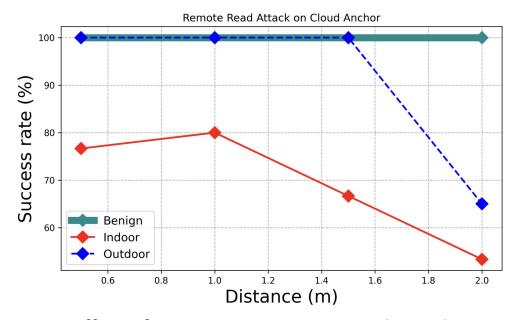

Scenario A: Remote write attack

- Attacker writes AR holograms in places where she is not authorized to access or contribute to
- Attacker deceives Google's Cloud Anchor API
 - Fake camera: photograph of location

Scenario A: Local, Non-Curated Shared State

- Triggered Remote Write Attack:
 - Advanced Remote Write Attack.
 - Attacker can manipulate the victim's environment with pre-determined triggered features.

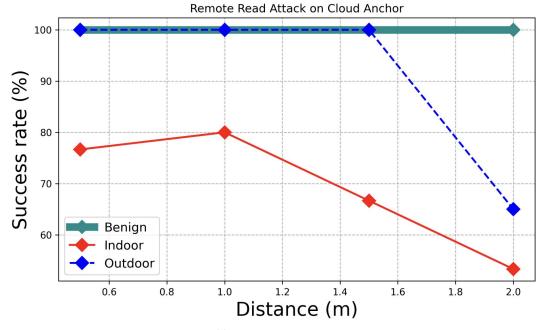
Scenario A: Evaluation


• Six different environments.

- Samsung Galaxy S20 Android phone with Google ARCore support.
- Good and robust success rate among three attacks.

Environment	Attack success rate		
Environment	Static scene	Add clutter	
Office desk	8/16	7/16	
Bedroom desk	6/16	4/16	
Bedroom bed	10/16	8/16	
Outdoor garden	1/16	0/16	
Outdoor BBQ	16/16	15/16	
Outdoor pool	15/16	14/16	

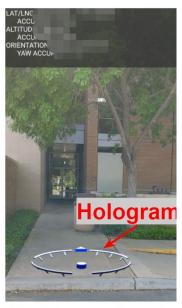
Remote Write Attack Success Rates



Effect of Distance on Remote Read Attack

Scenario A: Evaluation

Environment	Attack success rate		
Environment	Static scene	Add clutter	
Office desk	15/16	15/16	
Bedroom desk	13/16	12/16	
Bedroom bed	15/16	13/16	
Outdoor garden	3/16	1/16	
Outdoor BBQ	16/16	16/16	
Outdoor pool	16/16	16/16	

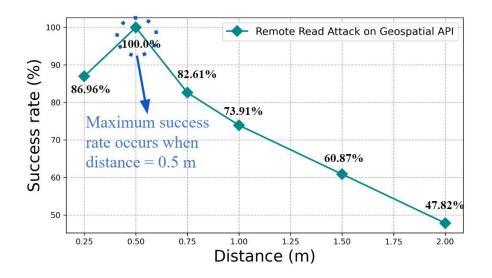

Triggered Remote Write Attack

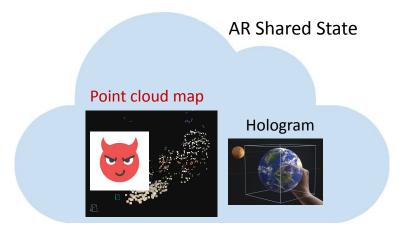
Distance Effect on Remote Read Attack

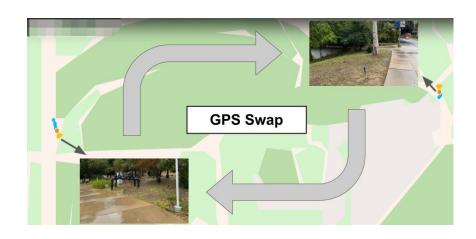
Scenario B: Remote read attack

- Attacker reads a hologram from <u>a remote location</u>.
- Attacker deceives Google's Geospatial API
 - Fake camera: photograph of location
 - Fake GPS: GPS spoofing app

Write hologram at physical location


Scenario B: Evaluation




- Samsung Galaxy S8 and the Samsung Galaxy S21 with Google Geospatial API support.
- Good and robust success rate through all locations.

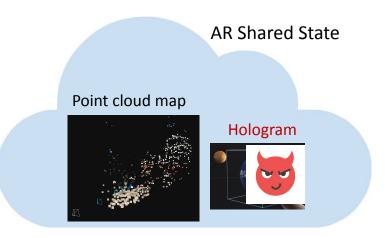
Scenario C: Poisoned write

- Poisoned write to the <u>Shared State's point cloud map</u>
- Attacker deceives point cloud generation algorithms
 - Fake GPS: Swap GPS coordinates of two images sequences by editing image metadata
- Experiments done in a Mapillary sandbox with permission
 - No public users were affected

Attack 2 Preview: Example on Mapillary

No attack: Desired annotations

With attack: Annotations swapped



Dangerous scenario!

Scenario C: Global, Crowd-Sourced Shared

- Poisoned Write of <u>Shared Holograms</u>.
- Attacker deceive point cloud generation algorithms by uploading manipulated camera input to modify the holograms.

(a) Real world ground truth.

(b) Tampered image.

Mitigation Using Multi-Modal Sensors

- How to detect fake camera inputs?
- Idea: Use additional sensor modalities
 - AR devices equipped with depth sensor, Lidar, etc.
- How did we evaluate this defense?

CNN: ResNet-18 network to detect spoofed images

Dataset: 15 real scenes, 300 pairs of color and depth image of each scene

Same process to collect images in front of monitor showing spoofed image

Training: 12 scene for training; 3 scenes for test

Precision: 84.22%

Other potential mitigations
Clean-Slate System DesignReal Space Security

RGB camera of spoofed image

Depth camera of spoofed image

- Local Moderators

Mitigation

- Clean-Slate System Design.
- Real Space Security.
- Local Moderators.

Summary

AR devices sense information about a common reality

Info shared across apps and systems

- Multi-user application attacks on shared world state (First)
 - Read/write holograms despite not being physically present
 - Demonstrated on 3 commercial AR frameworks
- Easy mitigation strategies (e.g., multi-modal sensing) are effective
 - But require additional sensors and compute

Thank you! Questions?

Thank you! Any questions?

Pedram Zaree

vzhan846@ucr.edu

https://sites.google.com/view/multi-ar-defense/

Conclusion

- Common vulnerabilities regarding Read and Write operations in commercial, publicly AR frameworks with shared state.
- A unified threat model that covers these current and prospective AR applications.
- AR-specific attacks on shared state in three AR frameworks, using real AR devices in the real world (**First**).
- Detailed mitigation against attacks.