Text-to-3D Generative AI on Mobile Devices: Measurements and Optimizations

Xuechen Zhang¹*, **Zheng Li**²*, Samet Oymak², Jiasi Chen²

¹University of California, Riverside ²University of Michigan, Ann Arbor *co-first authors

Gaming Product Design

Problems:

Not ready for mobile deployment due to resource constraints (memory, compute, energy, etc.)

E.g., DreamFusion takes **12** hours to generate a 3D object on a NVIDIA V100 GPU

Motivation

We want to deploy Text-to-3D generative AI on mobile devices while ensuring good user experience

Low Latency Low Memory Usage High 3D Object Synthesis Quality

Motivation

Low Latency Low Memory Usage High Synthesis Quality Optimization

Measurements to identify bottlenecks

Background: 3D Representations

3D

Background: 3D Representations Explicit Representation Implicit Representation

Point Clouds

NeRF

SDF

Background: Explicit Representations

Point Clouds

Usually use discrete locations represented by points, edges etc.

3D Meshes

Low Latency Low Memory Usage Low Synthesis Quality

Background: Implicit Representations

NeRF: Neural Radiance Fields

SDF: Signed Distance Field

High Latency due to Computation High Memory Usage due to Computation High Synthesis Quality

Background

Background: Diffusion Model

Reverse Diffusion Process

Forward Diffusion Process

Many steps of an expensive machine learning model (e.g. Unet, ViT) is needed to learn the reverse diffusion process.

Diffusion Model Overview Point-E (Dec. 2022) Shap-E (May 2023) Base **Diffusion Model Diffusion Model Base Diffusion** Upsampler Model Update Update **CLIP** Text Timestep Timestep Latent **CLIP** Image **Point Clouds** Encoder Vectors Encoder **3D Representation 3D Representation** Fine-tuned Decoder GLIDE (NeRF/STF)

Text Prompt

2D View

Text Prompt

2D View

Measurements

What are the **bottlenecks** to deploy text-to-3D models on mobile devices?

What to measure?

Optimization Goals: Low Latency Low Memory Usage Good Synthesis Quality

Measurement Setup

Hardware: NVIDIA T4 GPU (weak server GPU) NVIDIA Jetson AGX Orin (mobile GPU)

Dataset:

Measurement Setup: Model Configurations

For Point-E and Shap-E:

Parameter count for Diffusion:

✤ 40M
✤ 300M
✤ 1B

Conditioning options:
Text-only 3D
Image-conditional (Default) Text 2D 3D

Latency-Quality Tradeoff

Synthesis quality: Image-conditional > Text-only

Latency: Text-only < Image-conditional

Latency (minutes)

Latency Breakdown

GPU Memory Measurement

Point-E

Model Optimization

What to optimize?

Diffusion process!

Model Optimization

How to optimize?

Distillation Quantization Can be generalized for other diffusion based models

• Neural Architecture Search, Pruning, etc.

Model Optimization: Distillation Speed up the model by reducing steps

Synthesis quality severely degrades at lower latency.

Model Optimization: Quantization

Speed up the model and reduce memory usage by using lower precision parameters: 32 bit 28 bit Quantization

	Library	Layers	Quality ↑	Speed
Point-E results:	Original	n/a	15.4%	×1
	TensorRT	Linear	10.2%	×1.3
	TensorRT	All	1.7%	×1.8
	PyTorch (FBGEMM)	Linear	11%	×1.3

Model Optimization: Quantization

Speed up the model and reduce memory usage by using lower precision parameters: 32 bit 38 bit Quantization

	Library	Layers	Quality ↑	Speed
Point-E results:	Original	n/a	15.4%	×1
	TensorRT	Linear	10.2%	×1.3
	TensorRT	All	1.7%	×1.8
	PyTorch (FBGEMM)	Linear	11%	×1.3

May need custom per-layer quantization

Summary

Thank you! Questions?

Custom optimization (e.g. distillation, quantization) of text-to-3D models needed for mobile deployment.

Shap-E outperforms Point-E on mobile devices, possibly due to its efficient implicit representation.

 Synthesis quality:

 Text

 2D

 3D

 Text

 3D

