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Text-to-3D Generative AI

Gaming Product Design

Application 
Scenarios:
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Text-to-3D Generative AI

Problems:
Not ready for mobile deployment due to resource constraints 
(memory, compute, energy, etc.)

Gaming Product Design

Mobile 
Devices
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E.g., DreamFusion takes 12 hours to generate a 3D 
object on a NVIDIA V100 GPU



Motivation

We want to deploy Text-to-3D generative AI 
on mobile devices while ensuring good 
user experience 

Low Latency 
Low Memory Usage
High 3D Object Synthesis Quality
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Motivation

Low Latency 
Low Memory Usage
High Synthesis Quality

Optimization

Measurements to identify bottlenecks
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Background

Natural 
Language 

Processing

Generative 
AI

Computer 
Vision

Text to 3D- -
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Background: 3D Representations

Computer 
Vision

3D
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Background: 3D Representations
Explicit Representation Implicit Representation

Point Clouds

3D Meshes

NeRF

SDF
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Background: Explicit Representations

Point Clouds 3D Meshes

Usually use discrete locations represented by points, edges etc.

Low Latency 
Low Memory Usage
Low Synthesis Quality
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Background: Implicit Representations

NeRF: Neural Radiance Fields

High Latency due to Computation
High Memory Usage  due to Computation
High Synthesis Quality

SDF: Signed Distance Field
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Background: 3D Representations

Explicit Representations Implicit Representations
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Latency 

Memory Usage

Synthesis Quality



Background

Generative 
AI

to
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Background: Diffusion Model

Forward Diffusion Process

Reverse Diffusion Process

Many steps of an expensive machine learning model (e.g. Unet, 
ViT) is needed to learn the reverse diffusion process.
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Diffusion Model Overview
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Point-E (Dec. 2022) Shap-E (May 2023)



Measurements

What to measure?

Optimization Goals:
Low Latency 
Low Memory Usage
Good Synthesis Quality
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What are the bottlenecks to deploy text-to-3D models 

on mobile devices?



Measurement Setup

NVIDIA T4 GPU (weak server GPU)
NVIDIA Jetson AGX Orin (mobile GPU)

16

Hardware:

Dataset:



Measurement Setup: Model Configurations

For Point-E and Shap-E:

Parameter count 
for Diffusion:
❖ 40M
❖ 300M
❖ 1B

Conditioning options:
❖ Text-only

❖ Image-conditional (Default)

Text 3D

Text 2D 3D
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Latency-Quality Tradeoff

Better
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Text-only

Image-conditional

Synthesis quality:
Image-conditional > 
Text-only 

Latency:
Text-only < 
Image-conditional



Latency Breakdown
Point-E Shap-ELatency (s) Latency (s)
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Image-conditional

Image-conditionalDiffusion is a latency bottleneck!



Start diffusion

GPU Memory Measurement

Start base diffusion Start upsampling
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Implicit representation can save memory usage during generation. 

Start decoding (rendering)

Point-E Shap-E (300M, Text-only)



Model Optimization

What to optimize?

Diffusion process!
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Model Optimization

How to optimize?

● Distillation

● Quantization

● Neural Architecture Search, Pruning, etc.

Can be generalized 
for other diffusion 
based models
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Model Optimization: Distillation

Teacher Student

Speed up the model by reducing steps
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Model Optimization: Distillation

Teacher Student
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Speed up the model by reducing steps



Model Optimization: Distillation

150 steps

74 steps

36 steps

Point-E results:

25

Synthesis quality severely degrades at lower latency.

Speed up the model by reducing steps



Model Optimization: Quantization

Speed up the model and reduce memory usage by 
using lower precision parameters: 32 bit 8 bit

Quantization

Point-E 
results:
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Model Optimization: Quantization

Speed up the model and reduce memory usage by 
using lower precision parameters: 32 bit 8 bit

Quantization

Point-E 
results:
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May need custom per-layer quantization



Summary

Custom optimization (e.g. distillation, quantization) of 
text-to-3D models needed for mobile deployment.

Shap-E outperforms Point-E on mobile devices, possibly 
due to its efficient implicit representation.

Synthesis quality:
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Text 3DText 2D 3D

Thank you! Questions?

>


