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Abstract
World-scale augmented reality (AR) is a form of AR where
users move around the real world, viewing and interacting
with 3D models at specific locations. However, given the geo-
graphical scale of world-scale AR, pre-fetching and storing
numerous high-quality 3D models locally on the device is in-
feasible. For example, it would be impossible to download and
store 3D ads from all the storefronts in a city onto a single de-
vice. A key challenge is thus deciding which remotely-stored
3D models should be fetched onto the AR device from an
edge server, in order to render them in a timely fashion – yet
with high visual quality – on the display. In this work, we pro-
pose a 3D model retrieval framework that makes intelligent
decisions of which quality of 3D models to fetch, and when.
The optimization decision is based on quality-compression
tradeoffs, network bandwidth, and predictions of which 3D
models the AR user is likely to view next. To support our
framework, we collect real-world traces of AR users playing
a world-scale AR game, and use this to drive our simulation
and prediction modules. Our results show that the proposed
framework can achieve higher visual quality of the 3D models
while missing fewer display deadlines (by 20%) and wasting
fewer bytes (by 10×), compared to a baseline approach of
pre-fetching models within a fixed distance of the user.

CCS Concepts: • Information systems→Multimedia stream-
ing; • Human-centered computing→ Ubiquitous and mo-
bile computing.

Keywords: Augmented reality, world-scale AR, 3D model
retrieval
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Figure 1. As 3D models become more complex, their retrieval
time increases. Download times measured from an Android
device with a 100 Mbps bandwidth.
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1 Introduction
Augmented Reality (AR) overlays 3D models onto the phys-
ical world, and is one of the most promising “killer apps”
for mobile and wearable devices. While many current AR
apps are limited to small local areas (e.g., furniture place-
ment in a room), in the future we envision world-scale AR,
which encompasses a much larger geographical area, becom-
ing prevalent. Prime examples of world-scale AR include
Pokemon Go, Niantic’s Urban Legends demo app [5], and
Google Maps Live View. As world-scale AR develops, we en-
vision a rich ecosystem of AR apps populating the world with
3D models and users viewing these models seamlessly inte-
grated with the real world. For example, as a user walks along
a route, she may see 3D ads on top of real world store front,
alongside virtual navigation directions and game creatures.

A key expectation of the user is that the 3D models pop
up as soon as the user points her device in the appropriate
direction. In the above example, when the user faces the
relevant store front, the ads with high-quality 3D models
should appear quickly in the display. Several contributors
to the total latency: (a) determining where the 3D model
should be placed on the display, (b) retrieving the 3D model
data, and finally (c) rendering it onto the display. The former
(a) has been optimized through object detection or image
matching [17, 23], and the latter (c), is relatively fast (3-7%
of end-to-end latency) without hardware accelerators [33, 35].
Our proposed work can reduce one component of end-to-end
latency and are complementary to any rendering performance



MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada Tsai, et al.

optimizations. In this work, we focus on the retrieval of the 3D
model data (b) as a critical contributor to the overall latency.

Why is retrieving 3D model data challenging? The main
reason is that the 3D model is large, which can lead to long
retrieval times. For example, a detailed dragon model [3]
requires 113 MB, and even with compression techniques [1]
still consumes 40 MB. While current 3D models in AR games
are relatively simple (e.g., a static Pokemon creature), we
envision that in the future, more complex and animated 3D
models will be needed. Figure 1 shows the sizes of different
3D models and their download times, from a simple deer
model to a complex animated character from a modern video
game. If multiple complex 3D models with an average size
of 50 MB are present in a world-scale area, such as a campus
of 5 km2 with a 3D model every 10 m, this would require
approximately 50 MB/10 m2 × 5km2 = 25 GB of storage.

This 3D model data can either be stored locally or remotely.
However, relying on local disk is undesirable, as it would
require the dedicated 25 GB just for a single app.Remote stor-
age and rendering [4] is an alternative but requires dedicated
computing from edge infrastructure, as well as continuous
network connectivity which may not be possible as a user
moves around in world-scale AR. In this work, we focus
on remote storage plus local rendering, as it requires min-
imal infrastructure support and is compatible with today’s
AR development platforms (e.g., Unity, ARCore). However,
retrieving 25 GB of data over the network is challenging, even
with 5G download speeds of up to 1 Gbps [25], and it would
take more than 3 minutes to pre-download all the models.A
naive solution of retrieving all the 3D models in the world
from a server leads to untenable latencies as the user waits for
the models to be downloaded and shown on the display. Prior
approaches in the multimedia community partition purely vir-
tual spaces [7, 8, 15, 16] and retrieve nearby elements react to
user movements without considering their future trajectory.

The main idea of this work is that as the world-scale AR
user explores the real world, visiting locations where she
expects to see/interact with 3D models, which should be re-
trieved just in time from the edge server for rendering locally.
The challenge lies in determining which 3D model should
be retrieved when, while respecting resource constraints. Re-
trieving model too early would waste network and storage
resources, while too late would risk it not appearing on the
display when she arrives at its location. Decisions made ear-
lier on affect later decisions, as network resources are finite.
An additional dimension that adds complexity is the choice
of model quality. Overall, this problem is non-trivial to solve.

Two additional pieces of information could potentially aid
this decision-making: (a) an estimate of a 3D model’s visual
quality, and (b) a prediction of which 3D models the user is
likely to view next. Knowing the former allows for a graceful
tradeoff of visual quality for latency; for example, a nearby
3D model could be retrieved more quickly at a lower quality,
since it is likely to be viewed sooner. However, the visual
quality of 3D models depends on myriad factors, such as the

geometry and texture quality, and standard 3D model formats
(e.g., .glTF) do not typically include such information. Know-
ing the latter allows for better prioritization of model retrieval,
based on past history of other AR users’ behavior in the same
geographical area. For example, a user located at an intersec-
tion may be more likely to turn to the right for a valuable 3D
game treasure. However, no publicly available traces currently
exist, to the best of our knowledge, of user mobility in world-
scale AR (the closest is for synthetic room-scale AR [29]).
AR user mobility patterns can differ from traditional walking
patterns, so without AR-specific data, prediction is difficult.

The contributions of this work are summarized as fol-
lows:
• Characterizing visual quality tradeoffs of 3D models:

We profile a set of 3D models to learn the tradeoffs between
compression parameters (e.g., texture quality, mesh quan-
tization), perceptual quality (measured using SSIM [30]),
viewpoint, and file size. Our main takeaway is that mesh
quantization has the greatest impact on perceptual quality.
We develop a prediction module that estimates the visual
quality of a 3D model based on the relevant factors.
• Predicting what an AR user will view: We conducted

a measurement campaign of real users playing a world-
scale AR app. With this data, we designed a prediction
module that predicts which 3D models the AR user will
view next. It does this by leveraging information about user
interactions with the AR app, such as what areas the user
is looking at on the display, in order to better predict where
a user will go, and hence which 3D models will be viewed.
• Optimizing which 3D models are retrieved when: With

the aforementioned inputs, we formulate the problem of de-
ciding which 3D models to request when, and at what qual-
ity. The resulting problem is a combination of a multiple-
choice knapsack and an earliest-deadline first scheduler,
which we solve optimally using dynamic programming.
• Trace-driven simulations and prototype: User study data

as well as synthetic traces were used to evaluate overall
framework. Our results show that compared to Median
baseline, our method can retrieve 3D models with compara-
ble quality while meeting retrieval deadlines (11% misses
vs 57%) and wasting lesser data (1.4 GB vs 48 GB). We
also implement an Android proof-of-concept prototype.

In the remainder of this paper, we discuss related work (§2),
the overall system design (§3), scheduling and optimization
of 3D model retrieval (§4), AR user behavior prediction (§5),
and 3D model visual quality characterization (§6). Finally,
we discuss the evaluation results (§7) and conclusions (§8).

2 Related Work
3D model quality characterization: Several works consider
the impact of 3D object compression on perceptual quality.
[24] considers texture adaptation, but not meshes. [32] con-
siders both textures and meshes to generate rate-distortion
curves. However, they do not consider a comprehensive range
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of factors (e.g., viewing angle, distance, mesh quantization,
texture compression) in estimating quality, as we do.

3D model adaptation and world partitioning: Several
works [12, 14] propose techniques for retrieving point clouds,
which are a different type of 3D data than the mesh/texture-
based 3D models that are often used in AR. [11] proposes
extensions to DASH for VR, selecting the segments of the
VR scene to download based on the predicted viewport. Fu-
rion [18] pre-renders different viewports, and chooses adja-
cent viewports for rendering. Modern video games split vir-
tual world into chunks, and pre-load nearby chunks [7]. Other
work on Networked Virtual Environments (NVE) [8, 15, 16]
also partition virtual world and serve content to users based
on their surrounding Area of Interest (AoI), which is typically
circular. A detailed comparison is given in Table 1. None of
these works incorporate prediction based on what is on the
AR display to make proactive decisions, and instead react
to the user’s movements. Their method of choosing nearby
chunks, partitions, or viewports for rendering is similar to our
baseline that fetches nearby 3D models based on distance.
Talaria [9] migrates parts of game state between edge servers,
whereas we seek to retrieve objects from the server.

The closest to this work is perhaps [22], which also studies
3D model adaptation for AR; however, it considers a smaller-
scale AR scene with only four 3D models in a single room,
and assigns a joint deadline to all models under the assump-
tion of fixed bandwidth. When scaling up to world-scale AR,
bandwidth will be wasted since all models are downloaded.
In contrast, we adjust each model’s deadline based on when
the user is predicted to view it.

Geography-based offloading: Several works in cloud/edge
offloading consider user mobility when making offloading de-
cisions [19, 27, 34]. Our framework differs in that we jointly
optimize which 3D model to download and what version, un-
like geography-based offloading, which typically optimizes
which server to run a task on (ignoring what version of a
task to run). Further, our user mobility predictor considers
AR-specific aspects such as the visual display to help predict
user behavior, unlike mobility prediction in these works.

AR user behavior: User movement prediction based on
the history of user trajectories have been studied [28, 31]
for non-AR user experience purposes. [17] predicts AR user
movement for fast image matching, but only predicts time and
rotation. Several works [26, 29] perform viewport prediction
for users navigating a synthetic AR app in 27 m2 (290 ft2)
indoor lab, rather than our dataset which is primarily outdoor,
from a real-world AR application, covers larger areas (around
1 km2) per trace, and contains traces from multiple US states.

3 System Design
The system design is shown in Fig. 2. On the server side, 3D
models (e.g., teapot, rabbit) with different quality levels are
stored. Based on the 3D models’ locations (provided by the
AR ecosystem [17, 23]) and the user’s predicted location, the
client decides which version of 3D model should be fetched

User
predic-
tion

Area of
Inter-
est

Content
delivery

Optimal
version
selection

HyperVerse [8] N circular P2P N
VAST [15] N circular P2P N
FLoD [16] N circular P2P progressive

mesh
DASH 3D [11] Y viewport

based
centralized N

Ours Y viewport
based

centralized Y

Table 1. Detailed comparison of related NVE works. They
focus on partitioning the world and delivering content from
adjacent regions, which is similar to our Distance baseline.

User Behavior 
Predictor (§5)

3D Model Scheduler
(§4)

Bandwidth 
Estimation

Server Client Gestures, visual data

GPS, IMU

Predicted 3D 
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Deadlines dijt

3D model 
qualities uij
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3D Model 
Database
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quality levels

AR display
Rendering
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of 3D model

3D Model
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AR world 
generator 3D model 

locations

Figure 2. System architecture. Given a set of 3D models at
various quality levels, our system retrieves the optimal 3D
model versions from the server so that the 3D models are
rendered in time on the display.

and when, downloads it from the server, and renders it on the
display. There are three main modules to accomplish this:
• 3D Model Scheduler (client): This module takes as input

the 3D model quality/utility values, which 3D models the
user is predicted to view next, time-varying estimates of
network bandwidth, and the 3D model display deadlines
(from the User Predictor module). It determines a retrieval
order for each 3D model based on the deadlines, and runs
a dynamic program that maximizes the sum utility of the
downloaded 3D models, while meeting their retrieval dead-
lines within the available network bandwidth.
• User Behavior Predictor (client): To predict which 3D

models the user is likely to view next, this module takes
inputs: the user’s geolocation history (GPS, IMU), the lo-
cation of 3D models of interest, and the user’s interactions
with the AR display (e.g., viewing a map of nearby 3D
models). The main insight is that by understanding these
interactions, the predictions should outperform standard
prediction that only relies on geolocation history.
• 3D Model Characterizer (server): This module quantita-

tively evaluates the visual quality of compressed version of
3D model, based on compression parameters such as mesh
quantization, view angle and distance, etc. The predicted
visual quality/utility is used by the 3D Model Scheduler.
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Bandwidth: 5 Mbps
Speed: 1 footprint/s

Size unit: Mb

Utility Size

V1 0.99 25

V2 0.97 20

V3 0.95 18

Utility Size

V1 0.98 20

V2 0.94 15

V3 0.90 10

Utility Size

V1 0.98 18

V2 0.95 15

V3 0.90 13

Miss

Miss

Utility Size

V1 0.99 30

V2 0.95 20

V3 0.89 10

Figure 3. Toy example. A user encounters a set of 3D mod-
els, each available in 3 versions. Compared to the “Median”
baseline, our method selects the correct models to achieve
good visual quality (2.87 vs 0.95), with fewer misses (0 vs 2).

Bt estimated network bandwidth at time slot t
c confidence threshold for the User Predictor

di jt download time of 3D model i, version j ending at time t
Dr cumulative download duration of the first r 3D models
H length of user history input to the User Predictor
M number of versions of each 3D model available
N number of 3D models
si j size of 3D model i at version j

ti deadline of downloading 3D model i (derived from §5)
T how far into the future the User Predictor should operate
ui j utility (i.e., SSIM) of 3D model i in version j

U (i, t) optimal utility of the first i 3D models after time t
xi jr decision variable of whether to download 3D model i in

version j in the r th place

Table 2. Table of Notation

These three modules work together in concert.The User Be-
havior Predictor runs on the client, due to privacy concerns
(private geolocation and display information), and shares its
result and deadlines with the 3D Model Scheduler. The 3D
Model Scheduler also runs on the client, it obtains nearby 3D
models information such as size and visual quality from the
3D Model Characterizer, running on the edge server, and re-
quests the appropriate 3D model versions from server through
HTTP request. The User Behavior Predictor and 3D Model
Scheduler run continuously in the background as the user
moves around the world.

4 3D Model Scheduler
The goal is to select which version of each 3D model should
be retrieved, and in what order, which we formulate as an
optimization problem. This decision is based on the next
set of 3D models the user is likely to view (from the User
Prediction module), as well as the set of available 3D models
on the server (from the 3D Model Characterization module),
and finally the available network bandwidth.

Toy Example: A toy example is shown in Fig. 3. The
user walks along the path and encounters 3D models, each
available in 3 versions (shown in the adjacent table). The
“Median” baseline simply selects the median quality of all 3D
models in the world (orange rows). It would retrieve unneeded
3D models (e.g., the dragon) and request too high a quality

for the first encountered 3D model (yellow Pikachu), causing
it to miss its deadline, and resulting in a missed later 3D
model (green Bulbasaur). A better solution would be to avoid
downloading the dragon entirely, download a low-quality
yellow Pikachu (V3) since it will soon need to be rendered,
and download the remaining models at better quality (V1).
Our solution, which accounts for the future, can retrieve all
3D models within deadline with good visual quality.

System model: More formally, there are a set of N 3D
models {i} available in the world, each with M possible ver-
sions indexed by j. Each model has a utility ui j and a size si j ,
as well as a deadline ti . There is a time-varying bandwidth
B(t) which we assume is known from a bandwidth predictor.
The goal is to decide xi jr , whether 3D model i should be
downloaded at version j in the r th place. In other words, we
must both determine what quality models to download and in
what order. The optimization problem is:

Problem 1. 3D Model Scheduling and Version Selector

max
N∑
i=1

M∑
j=1

N∑
r=1

ui jxi jr (1)

s.t. si jxi jr ≤
t∑

t ′=t−di jt

Bt ′ ∀i, j, r , t (2)

Dr =

r∑
r ′=1

N∑
i=1

M∑
j=1

di jDr ′xi jr ′ ≤
N∑
i=1

M∑
j=1

tixi jr ∀r (3)

M∑
j=1

N∑
r=1

xi jr = 1 ∀i,
N∑
i=1

M∑
j=1

xi jr = 1 ∀r (4)

variables xi jr ∈ {0, 1},di jt ∈ N (5)

The objective (1) is to maximize the total utility of selected
3D model versions (obtained from §6). Constraint (2) states
that the selected 3D model’s size must fit into the band-
width.Constraint (3) defines the cumulative downloading du-
ration Dr of the first r downloaded 3D models. Each 3D
model must finish downloading before its retrieval deadline
ti (based on user prediction from §5). Constraint (4) says that
only one version of each 3D model should be selected, and
only one 3D model is downloaded at a time. Along with xi jr
as defined previously, di jt is another auxiliary variable that
can be interpreted as the download time of model i, version j
if it finished downloading in time slot t .

The above problem is a combination of a scheduling prob-
lem and an item selection problem: both the order of the 3D
model and the version of each 3D model must be selected. The
order matters because network resources consumed by earlier,
high-quality model downloads could take away from avail-
able resources for later downloads. However, this problem
can be simplified by sorting the 3D models by their deadlines
ti gives the optimal download order. This is given by the
following Lemma. The proof is provided in Appendix A.

Lemma 1. An optimal solution has the items downloaded in
ascending order of their deadlines ti .
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Map compass

Figure 4. AR visual data. The user’s tap on the AR display
(left) can suggest user intent. The corresponding trace (right)
shows that the user eventually walks toward the tapped point.

Hence this problem can be simplified by setting r = i, where
the items i are sorted by ascending ti , similar to an earliest-
deadline first scheduling algorithm. The simplified problem
formulation produces an optimal solution to the Problem 1
and is given by Problem 2 in Appendix A. Problem 2 can be
solved optimally via dynamic programming. To do this, the
di jt are pre-computed for all i, j, t as:

di jt = min{d : si j ≤
t∑

t ′=t−d

Bt ′} (6)

since we need to satisfy (9) while minimizing di jt for (10).
The recurrence relation of the dynamic program is:

U (i, t + di jt ) =

{
U (i, t − 1) if t > ti

maxj {U (i − 1, t − di jt ) + ui j } if t ≤ ti
(7)

where U (i, t) is the optimal utility of the first i 3D models
after time t . The first case represents when the time t has
exceeded the deadline of item i, ti , hence the optimal utility
is simply the utility one time step ago. The second case rep-
resents when the deadline is not exceeded, and the regular
recurrence relation for multiple choice knapsack holds. The
final solution is found at U (N ,max(ti )). The full algorithm
is given in the Appendix (Alg. 1), with pseudo-polynomial
runtime O(NM max(ti )max(si j )). In particular, the algorithm
is polynomial in N , the number of 3D models, so it should
scale well in more densely packed AR scenarios in the future.

5 User Behavior Predictor
The goal is to predict what set of 3D models is likely to be
viewed next and their deadlines ti , based on history of a user’s
behavior. The deadlines are set based on the distance between
user and the predicted interested 3D models and the user’s
average walking speed. We propose a data-driven approach
to do this. We assume that the 3D models are fixed at certain
locations, which are known to the predictor.

User study: We conducted a user study to measure the
volunteers’ behavior when playing an existing world-scale
AR application (i.e., Pokemon Go). Note that our framework
is not specific to Pokemon Go, but we chose it because it is a

1

2

Figure 5. A zone consists 2 smaller sub-zones and each has
25 cells. The blue points of interest are the Poke-stops and
Gyms, and the red lines show an example user trace.

widespread, popular app, from which we can collect realistic
user behavior traces for this proof-of-concept research. Our
framework applies to any future world-scale AR experience
where 3D models are placed in around the world. We collected
7 users’ data from 6 different zones (including parks, outdoor
malls, and university campuses) across multiple US states for
several weeks, resulting in a total of 289 minutes of traces.

Input features: We collected the following types of infor-
mation to train the predictor:
• AR visual data: We recorded the user’s screen and taps in

order to understand the user’s interaction in the AR app.We
hypothesize that what is shown on the display or the user’s
taps should provide some hint of where she is likely to
go, and hence improve the prediction of which 3D models
are next needed. For example, in Fig. 4, after user taps
on an object (the building), the user trace shows that user
eventually walks to the location in the real world to view
the 3D model. The map compass also provides a hint, as
the user rotated the map to have the compass point south,
and user eventually walks in a southerly direction.
• Geolocation data: The history of a user’s movement from

traditional sensors (e.g., GPS, IMU) can help predict move-
ment in the near future. Given knowledge of the locations
of the 3D models, this can provide hints on which 3D
model(s) the user is headed towards.
Design of the predictor: There were three main chal-

lenges we faced in the design of the predictor. We describe
these challenges and our solutions briefly below.

How to generalize the predictor for world-scale AR? Ide-
ally, we would like the predictor to work in all zones across
the world, so that data collected from one zone can help train
the predictor for other zones. The alternative would be to
build a separate predictor for each zone, which would be im-
practical for world-scale AR as this would require lots of user
data for training. For example, it would be easier for a global
predictor to learn the general behavior “users move in straight
lines” by seeing more examples from all zones, rather than a
per-zone predictor that sees only few straight-line examples
from its zone. To achieve this, we use relative position to rep-
resent the user location instead of absolute GPS coordinates;
that way, each user trace is not tied to a specific real-world
zone and can help train the overall model. Specifically, we
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Original SSIM 0.98 SSIM 0.91

Figure 6. 3D models with different SSIM, created with com-
binations of mesh quant. levels and texture compression.

divide each zone into equal-sized sub-zones with 25 cells,
give each sub-zone an ID, and convert the absolute longi-
tude/latitude into sub-zone ID and cell ID. To the predictor,
the input is a sequence of integer sub-zone and cell IDs repre-
senting the user’s location, and the output is the the cell ID(s)
that the user is likely to visit next, with its corresponding 3D
model(s). This integer representation helps the predictor learn
overall movement patterns that can generalize across zones;
if instead the position were represented by GPS coordinates,
the predictor would only learn patterns specific to each GPS
area. An example of one such zone, sub-zones and cells is
shown in Fig. 5.

How many 3D models to predict? A large output dimen-
sion (e.g., predict the next 100 models) would lead to too
many model parameters and possibly overfitting, while a low
output dimension (e.g., predict only the next 1 model) might
lead to too few 3D models being retrieved, and hence missed
deadlines. To address this, we set the output dimension to a
relatively liberal value, and filter it based on its confidence.
For example, if the predictor outputs three models [A,B,C]
with confidence values [94%, 5%, 1%] respectively, and we set
a confidence threshold of c = 5%, then only 2 models will
remain after filtering. In this way, the output dimension of the
predictor varies automatically.

How far into the future to predict? Ideally, a perfect pre-
diction far into the future would be very useful to the 3D
Model Scheduler. However, in practice, predictions far into
the future tend to be mistaken, possibly making wrong de-
cisions. To address this, we introduce a special null class as
output and is equivalent to saying “I don’t know”. Beyond a
time threshold T , the predictor should not try to predict, but
rather return the null class. In this way, it avoids predicting
too far into the future and returning mistaken predictions.

Predictor details: We use a gradient-boosted decision tree
model in the XGBoost library [10] to perform multi-class
classification, with 25 possible cells and the null class as out-
put. We chose XGBoost as the ML model due to its good
performance on a variety of application domains [13]; the
modular design of our framework allows for other ML mod-
els to be tried in the future. The predictor is given the past
H seconds of geolocation and AR visual data, and predicts
the most likely 3D models that the user will view next, up to
T seconds ahead. The number of 3D models output by the
predictor is determined by a confidence threshold c. We exper-
imentally evaluate the configuration settings in §7.3. Further
details are in Appendix C.

6 3D Model Characterizer
The goal of this module is to understand how compression pa-
rameters and viewing configurations of the 3D models affect
the visual quality and the file size. Based on this understand-
ing, the 3D Model Scheduler (§4) can try to select 3D model
version with reduced file size, without significantly degrading
the visual quality. We considered the following compression
parameters and viewing configurations:
• Mesh quantization: Mesh is the geometry, or shape, of a

3D model. It is a collection of vertices, edges, and faces,
which usually consist of triangles. A more complex model
has denser and smaller triangles.
• Texture resolution: A texture is a 2D image that is “wrapped”

onto a 3D model to provide additional details/colors. The
process of applying 2D images to 3D model requires map-
ping between 2D to 3D. A more complex model usually
has more fine-grained and detailed texture files.
• Distance and orientation: We also examined the distance

and orientation between the 3D model and the user. The
intuition is that a distant 3D model at low quality may have
similar visual quality as a nearby 3D model at high quality.
• Vertices and faces counts: The more complex 3D model,

the larger of vertices counts and faces counts. For example,
a cube model has 24/12 vertices/faces, while a relatively
complex bunny model has 36,425/69,451 vertices/faces.
To measure visual quality, we use the structural similarity

index measure (SSIM) [30], which has previously been used
to assess AR/VR visual quality [12]. SSIM is a full-reference,
perception-based quality assessment method to measure the
similarity in structural information compared to the original.
Unlike pixel-based quality metrics (e.g., mean-squared error),
SSIM takes the characteristics of human visual system into
account and the inter-dependencies between pixels, and there-
fore can better reflect the user-perceived visual quality [30].
SSIM values range from 0-1, with the higher the better. A
simple 3D bunny model with a detailed fur texture is shown
in Fig. 6.The right-most version has a lower SSIM of 0.91
with noticeable visual artifacts in texture, while model with
an SSIM of 0.98 appear reasonably close to the original.

7 Evaluation
In this section, we will first describe the setup and evaluation
of the 3D Model Characterizer (§7.1), 3D Model Scheduler
(§7.2), and User Behavior Predictor (§7.3) individually, then
our end-to-end evaluation with all modules together (§7.4).

7.1 3D Model Characterizer Evaluation

7.1.1 Setup To create 3D models with different qualities,
we used the Google Draco tool [1], to compress the mesh
position coordinates with different quantization levels (where
the level=number of bits). For texture files, we used the di-
mension resizing Mitchell algorithm [20] to downsize the
texture file into different resolution levels. To create a blank
slate for 3D model characterization, we created a Unity scene,
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Figure 7. SSIM with different levels of mesh quantization
and texture quality, of a bunny model. The mesh quantization
level is positively correlated with SSIM up to level 8, after
which the texture quality has more of an impact.

SSIM correlation
Compression
Parameter

All data Mesh
quant.<8

Mesh
quant. >=8

Mesh quantization 0.775 0.693 0.176
Texture resolution 0.023 -0.006 0.221
# Vertices -0.076 -0.202 0.007
# Faces -0.075 -0.202 -0.035
Distance 0.031 0.018 0.140
Orientation 0.003 0.009 -0.003

Table 3. Correlation coefficient between compression param-
eters and visual quality (SSIM). Mesh quantization has the
highest correlation, then texture resolution.

placed the 3D model at different distances and orientations,
captured screenshots, and computed the SSIM with reference
to its undistorted model. For each 3D model, we evaluated
5 distances and 6 or 12 equally spaced angles between the
3D model and the user’s viewpoint. We collected and char-
acterized 14 popular 3D models [2] with 5 different textures
and the aforementioned parameters to create our dataset. To
predict the SSIM, we trained a regression model using XG-
Boost [10] (parameters n_estimators=10, max_depth=6), with
a 75/25 train/test split. Further details are in Appendix B.

7.1.2 Results We first examined the Pearson correlation co-
efficient between the compression parameters (described in
§6) and the visual quality (SSIM). The goal is to understand
which parameters should be input to the visual quality predic-
tor. The results in Table 3 shows that across all data (second
column), the mesh quantization has the greatest correlation
with SSIM. Hence we further divide the dataset into mesh
quantization above/below 8 (third/fourth columns). The re-
sults indicate if the mesh quality is good enough, then texture
is a second important factor. For mesh quantization level<8,
texture is still correlated with SSIM, albeit to a lesser amount.

An illustration of the tradeoffs for the Stanford bunny
model is shown in Fig. 7. The surface drops off sharply as a
function of mesh quantization, and to a lesser extent with tex-
ture quality, consistent with Table 3. In fact, when the mesh
quantization is below 8, it can only achieve SSIM up to 0.868,
even with the best quality texture. The mesh file size ranges

Figure 8. Regression result of the 3D Model Characterizer.
The predicted SSIM (blue dots) follows closely with the true
SSIM (orange line), with average error of 0.04.

from 521 to 690 KB as the mesh quantization level increases,
showing increased visual quality requires larger file sizes.

In Fig. 8, we show the results of the SSIM prediction with
SSIM values on the y-axis, and the 3D models, sorted by true
SSIM, on the x-axis. The orange line is the true SSIM, while
the blue dots are the predictions. The blue dots generally
follow the orange line, indicating reasonably good predic-
tion performance, although there are a few isolated clusters
of blue dots that suggest poor performance, especially for
lower SSIMs. Upon closer examination, we found that these
are very simple 3D models, such as a cube, that misled the
characterizer. This is because there are fewer simple models
in the training dataset – most are more complex, which we
believe will be the case for future AR use cases. Overall, the
predicted SSIM had a mean error of 0.04 compared to the
ground truth with a Pearson correlation coefficient of 0.968.

7.2 3D Model Scheduler Evaluation

7.2.1 Setup To evaluate the scheduler, we created a simula-
tion, where 4-10 3D models are placed at random locations,
and a user performs a random walk for 30 seconds and 100
trials. We use a random walk model in order to stress test
the scheduler with highly variable walking patterns and more
traces compared to the real user data; the end-to-end evalu-
ation later in §7.4 showcases real user traces. We define a
user as viewing a 3D model when it is within 1 meter. The
utilities are downsample from the dataset collected in §7.1
with 4 versions per 3D model, each with utility above 0.90.
In expectation of more complex 3D models needed by fu-
ture AR apps, we set the file sizes of each version between
5 to 40 MB, positively correlated with the utility. A network
buffer keeps track of the progress, and flushes out unused 3D
models that are more than 15 seconds old (similar to LRU
cache). The network bandwidth is set to 5 MBps. We created
a baseline Median, which retrieves all 3D models without
considering deadlines, always fetching the median quality
version in random order.

Metrics: The metrics include the average utility of the 3D
models, as in Objective (1), and the number of times when
user views a 3D model, but it has not finished downloading.

7.2.2 Results The CDF of the average utility of the 3D
models over 100 trials in the simulation are shown in Fig. 9a.
The histogram of the number of times the 3D models were
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(a) 3D model utility (b) # of missed deadlines

Figure 9. The 3D Model Scheduler achieves higher aver-
age utility across trials, fulfilling all the requests with fewer
missed deadlines, compared to Median.

unable to be downloaded before their deadlines is shown in
Fig. 9b. To summarize, our method (Scheduler) generally has
higher utility and can successfully meet the retrieval deadlines.
Scheduler’s utility is lower than the baseline Median for about
20% of cases, because we sometimes retrieve a lower-quality
3D model in order to meet the retrieval deadline. This is in
line with our optimization formulation (Problem 1), which
requires the deadline constraint to be satisfied before maximiz-
ing utility in the objective function. Digging deeper, in terms
of download latency, both Scheduler and Median have median
latency of 100 ms, with Scheduler being slightly higher since
it chooses higher quality 3D models, while still meeting their
deadlines (so the latency is invisible to the user).

7.3 User Behavior Predictor Evaluation

7.3.1 Setup The distance and GPS bearing (the direction
from previous position to current position) of the user are cal-
culated each timestep. We also manually labeled the direction
of the application map compass as the AR visual data. These
are input into the machine learning model. 75% of the data is
used for training, 25% for testing. We define the Poke-stops
and Gyms (fixed locations where users can collect items or
battle with other users) as the 3D models viewed by the users.
The AR visual data can be defined as the set of Poke-stops
or Gyms that the user viewed on the application map (left
screenshot in Fig. 4), the application map compass (upper
right corner in the same screenshot), or a combination of both.
We chose the application map compass as the main form of
visual data, as it is the most helpful for prediction. We define
a sub-zone as 25 level-17 S2 cells [6], which is a geographical
region used by Google and Pokemon Go, and covers about
5000m2 per cell (level number corresponds to the cell size).
Each zone consists of 1-23 sub-zones. For example, an out-
door shopping mall had 1 sub-zone, a park had 9 sub-zones,
and a university campus had 23 sub-zones.

7.3.2 Results To systematically find the best hyperparame-
ter values, we performed a grid search acrossT = [5, 10, . . . , 30]
and H = [1, 2, . . . , 15], and evaluated the accuracy on the val-
idation set, as shown in Fig. 10a. For clarity, we only plot the
accuracy for those data samples where a 3D model was actu-
ally viewed (results are similar either way). The results shows
the top 15 accurate combinations of (T ,H ). “With_Visual”
means the predictor takes geolocation and AR visual data as
inputs, while “Without_Visual” only uses geolocation data.
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Figure 10. User Behavior Predictor evaluation. Using AR
visual and geolocation data (With_Visual) yields higher accu-
racy than without AR visual data (Without_Visual).

The combination of T = 30s and H = 15s yields the high-
est accuracy, more than 90%. A higher H value improving
prediction, since more history should help. A higher T value
means predicting further into the future, which may be harder,
but also more samples to train the classifier, so it overall in-
creases accuracy. Moreover, having AR visual data improves
accuracy. We also plot the top 5 important features for the
predictor in Fig. 10b. The most important 3 features are the
geolocation data, followed by the “Map Compass”, which is
the AR visual feature and was weighted more than the “De-
vice Direction”. In other words, the user’s interactions with
the screen (e.g., rotating the AR app’s world map reflecting
in the “Map Compass”) mattered more than the direction that
the device was physically pointing, validating our hypothesis
in §5. In summary, the trained predictor can accurately predict
which 3D model is about to be viewed (with the best (T ,H )),
and we use it in the end-to-end evaluation (§7.4).

7.4 End-to-End Evaluation

7.4.1 Setup Finally, we created an end-to-end trace-based
simulation that incorporates the preceding modules. The sim-
ulation uses 4 test traces (23/37/4/8 minutes each) from 4
different locations and users, which have not been seen be-
fore by the User Behavior Predictor. An LRU cache of size
100 MB is used, which about half the total size of all the
median-quality 3D models in one zone. The deadlines ti are
calculated as the distance divided by user’s walking speed.
Only those 3D models that are predicted to be viewed by
the User Predictor are sorted and fetched by the 3D Model
Scheduler. The network bandwidth is sampled from [21] to
simulate outdoor 5G network, with mean throughput of 74.5
MB/s and standard deviation of 51.3 MB/s.

Baselines: In addition to Median (§7.2), we also create
Distance, which retrieves the 3D models within a 160 meters
radius of the user, and in increasing order of distance between
the user and the 3D model. Other baselines include Bearing,
which retrieves 3D models in neighboring cells as pointed to
by the GPS bearing during the last H = 15 seconds; Visual,
which uses the same mechanism as Bearing, except for the
directional information is derived from the AR visual data
(the map compass), and Our, uses a simplified User Behavior
Predictor that does not include AR visual data. Our method,
which uses geolocation data and AR visual data as input fea-
tures, is labeled Our+Visual. We also implement an Optimal
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Figure 11. Our method achieves high average utility, few missed deadlines, low missed model delay, and much lower data waste
compared to the baseline. With AR visual data included (Our+Visual), further gains are possible.
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Figure 12. Our and Our+Visual generally outperform the baseline methods at different locations, particularly in challenging
environments such as a university campus with diversity of user behaviors.

oracle where the future behavior is perfectly known, and the
3D Model Scheduler picks exactly the models on time.

Metrics: In addition to previous metrics (see §7.2), we also
show the data waste, (how much unused data is downloaded),
and missed model delay, (how much delay is experienced by
users waiting for a missed model to be retrieved).

7.4.2 Results In Fig. 11, we plot previous mentioned met-
rics and we also provide an Optimal solution that has the best
average utility, zero miss, zero delay, and zero data waste.

The results show that although the Distance baseline is
better than the other baselines (Median, Bearing, and Visual)
in terms of utility, fraction of missed deadlines, and missed
model delay, Our also has few missed deadlines and saves
on data (by 10×). With the help of the AR visual data in the
user behavior prediction module, Our+Visual can maintain
comparable utility to Optimal and the fewest missed dead-
lines among all methods (23% less than Distance). Moreover,
Our+Visual has the lowest missed model delay, compared
to all baselines. In terms of data waste, since the Distance
method downloads models around the user, it wastes band-
width retrieving models not in view compared to Our and
Our+Visual methods. For Bearing and Visual baselines, al-
though directional information is considered and can save
data, their mechanisms are too simple to predict correctly,
resulting in more missed events and lower utility.

Different zones: Delving deeper into the results, individ-
ual results for missed deadlines at four of our test zones are
in Fig. 12. Our methods Our and Our+Visual outperform
others, but the Distance baseline does reasonably well in sec-
ond place and is a good alternative if training data for our
methods are not available. Also, the percentage of missed
events can vary quite widely among zones, with the outdoor
parks being easier zone, and the university campus being the
most difficult. The university campus is challenging because

it is a huge zone with 23 sub-zones and there are several out-
lier 3D models at the edges of the sub-zones, which are hard
to predict. Most players stay close to an important campus
building, so when they do venture to the outlying areas, the
User Behavior Predictor is not as capable of predicting those
3D model viewing events, and hence the 3D Model Scheduler
does not retrieve them in time.

On the other hand, the outdoor park, although a medium-
sized zone with 9 sub-zones, has relatively few Poke-stops,
so user prediction is easier. A smaller park with 4 sub-zones,
also supports this statement. In such easy zones, Distance
performs well, since the Poke-stops in park are sparse and the
directional information used by Our+Visual is not that useful.
In summary, not only the zone size matters, but also the
distribution of 3D models within the zone, with our methods
doing well particularly in more challenging environments.

Impact of cache size: We also show how cache capacity
can affect the performance in Fig. 13. As the cache capacity
grows, Our and Our+Visual methods are more stable in terms
of missed deadlines and missed model delay since we only
retrieve necessary models compared to Distance baseline.
Moreover, Our and Our+Visual methods are able to utilize
the increasing cache capacity and retrieve models with higher
utility, gradually approaching the Optimal. For the data waste,
noted that a cache capacity of 200 MB can accommodate
all the median versions 3D models in a single zone, and
Fig. 13d again proves that Our+Visual method can better
utilize network resources compared to Distance.

Robustness to noisy predictions: Finally, we examine
how noisy predictions by the 3D model characterizer and
user behavior predictor modules can impact overall perfor-
mance. For the model characterizer, we add noise to its pre-
dicted SSIM values, with the noise chosen uniformly between
[−x,+x] where x ∈ [0, 1]. These noisy SSIM values are fed
into the end-to-end framework. To isolate the impact of this
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Figure 13. Our and Our+Visual methods are more stable in terms of missed deadlines and extra delay of those missed models,
as cache capacity changes, compared to other baselines.
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Figure 14. With more noisy 3D model characterizer predic-
tions, the average utility drops as well. For the user behavior
predictor, as the top-1 accuracy increases, the missed dead-
lines decreases as does the data waste.

(a) Retrieved model quality (b) Data downloaded

Figure 15. Results of our prototype. Our+Visual saves data
while retrieving higher quality models on average.
noise, we temporarily assume perfect user prediction. Intu-
itively, the added noise could reverse the ordering of different
versions of a 3D model, resulting in a lower quality version
having a higher predicted SSIM and vice versa, misleading
the overall framework. In Fig. 14a, the average utility de-
creases as the maximum amount of noise (x) increases. Note
that the SSIM do not drop significantly and still remain above
0.97, which is higher than the baselines in Fig. 11a.

We conducted a similar robustness evaluation on the user
behavior predictor. We temporarily assumed perfect SSIM
prediction, and manually manipulated the percentage of the
correct cells predictions that were output by the user behavior
predictor. In Fig. 14b, we plot the top-1 accuracy (that we
manipulated) with respect to the missing events and total
data waste. Our+Visual’s missing event rate decreases as
top-1 accuracy increases and maintains reasonable values,
e.g., < 10% missed when the top-1 accuracy is higher than
0.4. The data waste also decreases with increasing accuracy,
and even with low top-1 accuracy our method still wastes less
data compared to the Distance baseline in Fig. 11d.

7.5 Android prototype

Finally, we developed an Android proof-of-concept proto-
type, to complement the above trace-driven simulations.The

locations of the 3D models are hardcoded to be similar to
Pokemon Go, and we followed a similar trajectory as the
previous university campus testing trace. When approaching
a 3D model, the application sends a request, pre-determined
by the 3D Model Scheduler, to the server to retrieve the
model at the determined quality, which is then rendered on
the app as shown in the AR display part in Fig. 2. We evaluate
the Our+Visual and Distance methods as those are the most
promising from the preceding simulations.

Fig. 15a shows the results of the retrieved model quality
level, with Our+Visual retrieving higher quality models on av-
erage. Fig. 15b shows the data downloaded. These values are
quite large, because this zone is a very challenging environ-
ment as we mentioned in §7. But, Our+Visual still achieves
significant data savings compared to Distance. Moreover, in
terms of fraction of models missed, Our+Visual retrieves all
on time, while Distance misses one model.

We also measured how much time ahead of the deadline
that each model was retrieved (higher is better). The average
time ahead for Distance was 14.44 s, while for Our+Visual
was 45 s. Overall, these results help validate the simulations
and demonstrate a proof-of-concept prototype.

8 Conclusions

In this paper, we explored the scenario of world-scale AR with
multiple 3D models geographically dispersed throughout the
real world. Under the premise that local storage is insufficient
to store all possible 3D models, and remote rendering requires
cloud/edge compute infrastructure, we explored challenges
in retrieving remotely stored 3D models from an edge server
for local rendering on the AR device. We propose a frame-
work to optimize which 3D models to download and when, by
characterizing 3D model quality-compression tradeoffs and
predicting AR user behavior. To drive the user predictions
and evaluations, we recorded the behavior of real users play-
ing a world-scale AR app (Pokemon Go). The results show
that combining AR user behavior predictions with principled
3D model pre-fetching can improve user experience by en-
abling more models to be retrieved before they are viewed,
at a higher visual quality. Future work includes further data
collection and exploring other visual data types to help the
AR user behavior prediction. This work does not raise ethical
issues, and the user study was conducted with IRB approval.
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APPENDIX
A Details of 3D Model Scheduler
Lemma 2. An optimal solution of Prob. 1 has the items down-
loaded in ascending order of their deadlines ti .

Proof. Suppose there is an optimal solution without items
downloaded in order of ti . Then we claim that an equiva-
lent solution exists with the items in sorted order. Let ri be
the order of the i th item. Then there exists at least one pair
of items (a,b) such that ra = rb + 1 despite ta < tb . We
claim that we could swap their orders ra, rb to get new orders
r̃a ← rb , r̃b ← ra and still achieve the same utility, since
the item versions are unchanged. Constraint (2) still holds
since the same number of bits is still downloaded within
the time period [Drb−1,Dra ], with the same available band-
width. Constraint (3) still holds for item a at order r̃a , since
Dr̃a =

∑rb
r ′=1

∑
i , j di jDr ′xi jr ′ <

∑ra
r ′=1

∑
i , j di jDr ′xi jr ′ ≤ ta =∑

i , j tixi j r̃a . Constraint (3) still holds for item b at order r̃b ,
since Dr̃b =

∑ra
r ′=1

∑
i , j di jDr ′xi jr ′ ≤ ta < tb =

∑
i , j tixi j r̃b .

Constraint (3) holds for all other items since the only the two
swapped items’ download times are changed. The constraints
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in (4) are satisfied by construction. Hence items (a,b) can
be swapped and keep the same utility, without violating any
constraints. We can swap additional item pairs until the items
are sorted. □

This Lemma is used to transform Problem 1 to the follow-
ing simplified problem formulation:

Problem 2. Equivalent formulation of Problem 1

max
N∑
i=1

M∑
j=1

ui jxi j (8)

s.t. si jxi j ≤
t∑

t ′=t−di jt

Bt ′ ∀i, j, t (9)

Di =

i∑
i′=1

M∑
j=1

di jDi′xi j ≤ ti ∀i (10)

M∑
j=1

xi j = 1 ∀i (11)

variables xi j ∈ {0, 1}, di jt ∈ N (12)

The items are the 3D models with choice of version, item
value ui j , and item weight di jt . The knapsack capacities are
the deadlines ti . However, there are key differences from the
classical knapsack problem: (a) there are multiple knapsack
constraints ti , and (b) the individual item weights di jt are not
fixed, but depend on the previous i − 1 chosen items.

Finally, Algorithm 1 presents the optimal dynamic program
to solve Problem 2. The input of this algorithm includes utility,
size, of all versions of the 3D models, retrieval deadlines for
each 3D model, and estimated bandwidth at each timestamp.
The output is the optimal version of each 3D model. For
each version, we first pre-compute the downloading time of
each 3D model in line 6, and the cumulative utility in line 8.
Then, we check if the cumulative downloading time up to this
version meets the retrieval deadline in line 9 and determine
the optimal utility of each 3D model i up to time t . The final
optimal solution is found at U (N ,max(ti )).

B Details of 3D Model Characterizer
14 popular 3D models range from simple cube with 12 faces
and 24 vertices count to complex video game asset with
263,146 faces and 757,378 vertices count are included in the
dataset with each model textured with 5 detailed texture files
with 4-5 quality levels ranging from 256x256 to 4096x4096
resolution and 128KB to 32 MB file size. Each model then
placed in 5 different distances (from 1 to 5 meters) and 6 or
12 equally spaced angles (30, 60,.. 360 degrees around the
vertical axis) to create different view to users. For each view,
a screenshot is taken to evaluate its SSIM by comparing to its
undistorted, best quality reference model view. Total dataset
consists of 167,670 samples.

Algorithm 1: Dynamic program to solve Problem 2
Input: Utility of version j of 3D model i ui j , size of version

j of 3D model i si j , deadline of 3D model i ti ,
bandwidth at time t B(t).

Output: Optimal version j of each 3D model i.
1 for i ∈ [1,N − 1] do
2 for t ∈ [0,maxi {ti } − 1] do
3 for j ∈ [0,M − 1] do
4 di jt ← 0;
5 for s = si j ; s > 0; s ← s − B(t − di jt ) do ▷(6)
6 di jt + +

7 end for
8 new_utility ← U (i − 1, t − di jt ) + ui j
9 if Di ≤ ti and new_utility > U (i, t) then ▷(7)

10 U (i, t) ← new_utility
11 else
12 U (i, t) ← U (i, t − 1)
13 end if
14 end for
15 end for
16 end for
17 return item versions corresponding to U (i, tN−1)

Input features for our model
Name Description Values
Mesh quanti-
zation level

Draco mesh compression level 1-15

Texture qual-
ity level

texture file downsizing level 1-5

# of Vertices vertices count real values
# of Faces faces count real values
Distance distance from user to model 1-5 m
Orientation orientation around the vertical

axis
In 30, 60◦
increments

Regression model parameters
Name Values
# Estimators 10
Max depth 6
Training set 75% dataset
Testing set 25% dataset

Table 4. Parameters for 3D model characterizer.

C Details of User Behavior Predictor
To train our classifier, geolocation features such as our con-
verted sub-zone ID, and cell ID, user’s distance and bearing
from previous position to current position, device direction de-
rived from device IMU sensor and hand annotated AR visual
data such as application map compass (i.e., north, northeast,
etc.) are used as input features. Besides, H = 15 seconds of
features are used to predict the next timestamp. The output
of the classifier is the cell IDs (1-25) that the user is likely to
view next or the null class. We use a confidence value c = 6%
to dynamically control the output dimension.



3D Model Retrieval for World-Scale AR MMSys ’23, June 7–10, 2023, Vancouver, BC, Canada

Input features for our model
Name Description Values
Zone ID IDs assigned to our test sites 1-6
Sub-zone ID IDs assigned to equal-sized sub-

zones in each zone
1-44

Cell ID user’s current location within
the cell in a sub-zone

1-25

Distance displacement from previous po-
sition to current position

real values

Bearing direction from previous position
to current position

[-180,180]

Device direc-
tion

device compass derived from
IMU sensor

0-359◦

Map compass annotated AR visual data (N, NW, W,
SW, W, SE,
E, NE)

Multi-class classifier parameters
Name Values
# Estimators 100
Max depth 6
Training set 75% dataset
Testing set 25% dataset

Table 5. Parameters for user behavior predictor.


