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Why is SLAM needed for AR?

▪ Augmented Reality (AR) applications must know 
the user device’s 3D location in the world

▪ Simultaneous Localization And Mapping
(SLAM) is the process for AR app to localize  

▪ SLAM is used when precision greater than GPS 
is desired

Tracking
(localization)

Mapping
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Background: Visual SLAM Execution Steps

▪ Visual SLAM is based on images of environment

1. Features are extracted from image frame

2. Tracking: Extracted features are compared to existing map to localize

3. Mapping: New features are inserted into the map

1. Map-points: feature points that will go in the map

2. Keyframe: Image frame and its position and orientation

4. Error is minimized in the map 

▪ We base SLAM-Share on ORB-SLAM, a Visual SLAM application

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: An accurate open-source library for 
visual, visual–inertial, and multimap slam.
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Map

Trajectory
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Multi-user AR Requires Information Sharing

User (A) User (B)Edge 
Server
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How does latency affect the AR display?
User B’s View

Case (c): With slow map merging, 
holograms may appear 
inaccurately placed

Case (a): Without information 
sharing, no holograms appear

User A’s View (Ground Truth)

Tracking
(localization)

Mapping

Case (b): With slow tracking, 
holograms may appear later
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IMU assist

Mapping

Tracking

Edge server

SLAM-Share
Overview

IMU assistIMU assist

Map merge 

GPU assist

Tracking
GPU assist

Tracking
GPU assist

Shared memory

AR client AR client AR client

Tracking

Mapping Mapping Mapping

Problem: Tracking 
is slow on mobile 
clients! < 30 FPS

Problem: Multiple 
clients’ maps need to 
be merged quickly! 
Default: takes 3 sec

Our contributions: New offloading architecture with IMU assist, GPU assist, map 
merging, and shared memory for high-throughput, multi-user visual SLAM for AR   
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Mapping

Tracking

Tracking

IMU assist

Map merge 

GPU assist

Tracking

GPU assist

Tracking

GPU assist

Shared memory

AR client

IMU assist

AR client

IMU assist

AR client
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GPU assist: 
How does the GPU help?

▪ Search Local Points is time-consuming
→ SLAM-Share exploits parallel threads

▪ ORB-Extraction is time-consuming
→ SLAM-Share exploits GPU parallelism

▪ Overall, SLAM-Share reduces tracking 
time by more than 40% compared to 
ORB-SLAM3 run in CPU only

OS3 = ORB-SLAM3

S-Sh = SLAM-Share

Requirement
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IMU assist

▪ Client needs pose in real-time

▪ If server contact lost

▪ IMU (Inertial Measurement Unit) assists client to 
determine pose

▪ Once server contact restored

▪ Client merges IMU + SLAM pose

▪ Evaluation: IMU-based tracking is accurate for a 
short time

▪ But long term IMU-based tracking accumulates errors

RTT (ms)
IMU-Tracking region 

ATE RMSE (cm)

0 (Baseline) 2.41

90 2.45

200 2.67

300 2.71

10000 300

Server Contact Lost!
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Mapping

Tracking

Mapping

IMU assist

Map merge 

GPU assist

Tracking

GPU assist

Tracking

GPU assist

Shared memory

AR client

IMU assist

AR client

IMU assist

AR client
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▪Map merging fuses the shared information between users
▪ Map merging brings together users’ maps and puts them in same “perspective”

▪ Without map merging, the virtual objects will be misplaced for some users

▪ With map merging, the virtual objects are at the same place for all users

Why is map merging needed?

Without map-merging: With map-merging:
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Map Merge Example Each client keeps 
local copies of shared 

map → inefficient!
→ Shared memory 

for global map
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Does ATE remain low throughout?

▪ We show a scenario of merging 3 clients’ maps with SLAM-Share

▪ Need low ATE  for accurate virtual object placement
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How Fast Does SLAM-Share 
Merge Maps?

▪ Baseline: multi-user implementation of 
Edge-SLAM

▪ Baseline map transfer from client to 
Edge server adds latency

▪ SLAM-Share’s use of shared memory 
lowers overheads

▪ Merging new map to global map is time 
consuming

▪ SLAM-Share incrementally updates the map

Latency breakdown of map update of SLAM-Share and 

Baseline when performing one Map-Merge between two maps

SLAM-Share Map Merge is an order of 

magnitude faster

Component Baseline (ms) SLAM-Share (ms)

Serialization (app) 78.1 N/A

Encoding N/A 3

Map transfer (to server) 66 0.11

Deserialization (app) 390.8 0

Map Merging 2339 190

Map transfer (to client) 6.4 0.1

Load Map (in client) 19.8 N/A

Total 2900.1 193.21

Ali AJ, Kouroshli M, Semenova S, Hashemifar ZS, Ko SY, Dantu K. 

Edge-SLAM: edge-assisted visual simultaneous localization and 

mapping. ACM Transactions on Embedded Computing Systems. 

2022 Oct 29;22(1):1-31.
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Is Multi-User SLAM-Share as good
as Single User ORB-SLAM3?

▪ Evaluation

▪ ATE of map created by SLAM-Share with 9.4 
Mbit/second bandwidth between client and Edge

▪ ATE of the map created by SLAM-Share with 300ms 
delay added for each packet

→ SLAM-Share multi-user maps are as 
accurate as those of single-user ORB-SLAM3
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Is SLAM-Share Accurate When
There is Network Delay?

▪ Comparisons

▪ SLAM-Share and baseline 

▪ With and without added delay

→ SLAM-Share has almost same accuracy 

despite 300 ms delay

→ Baseline suffers from higher short-term 

inaccuracies with increased delay
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CPU Overhead of SLAM-Share vs. Baseline Clients

▪ We evaluated the overall CPU use in SLAM-Share and Baseline clients

▪ SLAM-Share uses less than 1% of single CPU Core
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Conclusion

▪ SLAM-Share improves key components of Visual SLAM: tracking and mapping
▪ Intelligently re-thinks partitioning of SLAM tasks between mobile client and the Edge Cloud

▪ SLAM-Share exploits GPU-based tracking on the edge cloud 
▪ Speed up of tracking by more than 40%

▪ SLAM-Share uses shared-memory on edge cloud to rapidly merge client maps
▪ SLAM-Share’s Map Merging is an order of magnitude faster

▪ SLAM-Share achieves high-throughput multi-user visual SLAM-Share
▪ Very resource/power efficient on client - very small CPU and memory consumption

▪ Open-source code available: https://github.com/network-lab2/slam-share
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