
Networked
Systems Group

SLAM-Share: Visual Simultaneous Localization and Mapping
(SLAM) for Real-time Multi-user Augmented Reality

Aditya Dhakal, Xukan Ran, Yunshu Wang, Jiasi Chen and K. K. Ramakrishnan

University of California, Riverside

2

Networked
Systems Group

Why is SLAM needed for AR?

▪ Augmented Reality (AR) applications must know
the user device’s 3D location in the world

▪ Simultaneous Localization And Mapping
(SLAM) is the process for AR app to localize

▪ SLAM is used when precision greater than GPS
is desired

Tracking
(localization)

Mapping

3

Networked
Systems Group

Background: Visual SLAM Execution Steps

▪ Visual SLAM is based on images of environment

1. Features are extracted from image frame

2. Tracking: Extracted features are compared to existing map to localize

3. Mapping: New features are inserted into the map

1. Map-points: feature points that will go in the map

2. Keyframe: Image frame and its position and orientation

4. Error is minimized in the map

▪ We base SLAM-Share on ORB-SLAM, a Visual SLAM application

Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: An accurate open-source library for
visual, visual–inertial, and multimap slam.

4

Networked
Systems Group

Map

Trajectory

5

Networked
Systems Group

Multi-user AR Requires Information Sharing

User (A) User (B)Edge
Server

6

Networked
Systems Group

How does latency affect the AR display?
User B’s View

Case (c): With slow map merging,
holograms may appear
inaccurately placed

Case (a): Without information
sharing, no holograms appear

User A’s View (Ground Truth)

Tracking
(localization)

Mapping

Case (b): With slow tracking,
holograms may appear later

7

Networked
Systems Group

IMU assist

Mapping

Tracking

Edge server

SLAM-Share
Overview

IMU assistIMU assist

Map merge

GPU assist

Tracking
GPU assist

Tracking
GPU assist

Shared memory

AR client AR client AR client

Tracking

Mapping Mapping Mapping

Problem: Tracking
is slow on mobile
clients! < 30 FPS

Problem: Multiple
clients’ maps need to
be merged quickly!
Default: takes 3 sec

Our contributions: New offloading architecture with IMU assist, GPU assist, map
merging, and shared memory for high-throughput, multi-user visual SLAM for AR

8

Networked
Systems Group

Mapping

Tracking

Tracking

IMU assist

Map merge

GPU assist

Tracking

GPU assist

Tracking

GPU assist

Shared memory

AR client

IMU assist

AR client

IMU assist

AR client

9

Networked
Systems Group

GPU assist:
How does the GPU help?

▪ Search Local Points is time-consuming
→ SLAM-Share exploits parallel threads

▪ ORB-Extraction is time-consuming
→ SLAM-Share exploits GPU parallelism

▪ Overall, SLAM-Share reduces tracking
time by more than 40% compared to
ORB-SLAM3 run in CPU only

OS3 = ORB-SLAM3

S-Sh = SLAM-Share

Requirement

10

Networked
Systems Group

IMU assist

▪ Client needs pose in real-time

▪ If server contact lost

▪ IMU (Inertial Measurement Unit) assists client to
determine pose

▪ Once server contact restored

▪ Client merges IMU + SLAM pose

▪ Evaluation: IMU-based tracking is accurate for a
short time

▪ But long term IMU-based tracking accumulates errors

RTT (ms)
IMU-Tracking region

ATE RMSE (cm)

0 (Baseline) 2.41

90 2.45

200 2.67

300 2.71

10000 300

Server Contact Lost!

11

Networked
Systems Group

Mapping

Tracking

Mapping

IMU assist

Map merge

GPU assist

Tracking

GPU assist

Tracking

GPU assist

Shared memory

AR client

IMU assist

AR client

IMU assist

AR client

12

Networked
Systems Group

▪Map merging fuses the shared information between users
▪ Map merging brings together users’ maps and puts them in same “perspective”

▪ Without map merging, the virtual objects will be misplaced for some users

▪ With map merging, the virtual objects are at the same place for all users

Why is map merging needed?

Without map-merging: With map-merging:

13

Networked
Systems Group

Map Merge Example Each client keeps
local copies of shared

map → inefficient!
→ Shared memory

for global map

14

Networked
Systems Group

Does ATE remain low throughout?

▪ We show a scenario of merging 3 clients’ maps with SLAM-Share

▪ Need low ATE for accurate virtual object placement

15

Networked
Systems Group

How Fast Does SLAM-Share
Merge Maps?

▪ Baseline: multi-user implementation of
Edge-SLAM

▪ Baseline map transfer from client to
Edge server adds latency

▪ SLAM-Share’s use of shared memory
lowers overheads

▪ Merging new map to global map is time
consuming

▪ SLAM-Share incrementally updates the map

Latency breakdown of map update of SLAM-Share and

Baseline when performing one Map-Merge between two maps

SLAM-Share Map Merge is an order of

magnitude faster

Component Baseline (ms) SLAM-Share (ms)

Serialization (app) 78.1 N/A

Encoding N/A 3

Map transfer (to server) 66 0.11

Deserialization (app) 390.8 0

Map Merging 2339 190

Map transfer (to client) 6.4 0.1

Load Map (in client) 19.8 N/A

Total 2900.1 193.21

Ali AJ, Kouroshli M, Semenova S, Hashemifar ZS, Ko SY, Dantu K.

Edge-SLAM: edge-assisted visual simultaneous localization and

mapping. ACM Transactions on Embedded Computing Systems.

2022 Oct 29;22(1):1-31.

16

Networked
Systems Group

Is Multi-User SLAM-Share as good
as Single User ORB-SLAM3?

▪ Evaluation

▪ ATE of map created by SLAM-Share with 9.4
Mbit/second bandwidth between client and Edge

▪ ATE of the map created by SLAM-Share with 300ms
delay added for each packet

→ SLAM-Share multi-user maps are as
accurate as those of single-user ORB-SLAM3

17

Networked
Systems Group

Is SLAM-Share Accurate When
There is Network Delay?

▪ Comparisons

▪ SLAM-Share and baseline

▪ With and without added delay

→ SLAM-Share has almost same accuracy

despite 300 ms delay

→ Baseline suffers from higher short-term

inaccuracies with increased delay

18

Networked
Systems Group

CPU Overhead of SLAM-Share vs. Baseline Clients

▪ We evaluated the overall CPU use in SLAM-Share and Baseline clients

▪ SLAM-Share uses less than 1% of single CPU Core

19

Networked
Systems Group

Conclusion

▪ SLAM-Share improves key components of Visual SLAM: tracking and mapping
▪ Intelligently re-thinks partitioning of SLAM tasks between mobile client and the Edge Cloud

▪ SLAM-Share exploits GPU-based tracking on the edge cloud
▪ Speed up of tracking by more than 40%

▪ SLAM-Share uses shared-memory on edge cloud to rapidly merge client maps
▪ SLAM-Share’s Map Merging is an order of magnitude faster

▪ SLAM-Share achieves high-throughput multi-user visual SLAM-Share
▪ Very resource/power efficient on client - very small CPU and memory consumption

▪ Open-source code available: https://github.com/network-lab2/slam-share

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

