SLAM-Share: Visual Simultaneous Localization and Mapping (SLAM) for Real-time Multi-user Augmented Reality

Aditya Dhakal, Xukan Ran, Yunshu Wang, Jiasi Chen and K. K. Ramakrishnan

University of California, Riverside

Networked Systems Group

Why is SLAM needed for AR?

- Augmented Reality (AR) applications must know the user device's 3D location in the world
- Simultaneous Localization And Mapping (SLAM) is the process for AR app to localize
- SLAM is used when precision greater than GPS is desired

Pokemon Go Buddy Adventure

Background: Visual SLAM Execution Steps

- Visual SLAM is based on images of environment
- 1. Features are extracted from image frame
- 2. Tracking: Extracted features are compared to existing map to localize
- 3. Mapping: New features are inserted into the map
 - 1. Map-points: feature points that will go in the map
 - 2. Keyframe: Image frame and its position and orientation
- 4. Error is minimized in the map
- We base SLAM-Share on ORB-SLAM, a Visual SLAM application

Networked Systems Group UC RIVERSIDE

3 Campos, C., Elvira, R., Rodríguez, J. J. G., Montiel, J. M., & Tardós, J. D. (2021). Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam.

3

A

Wed 13:58

0

もし・

....

cona@cona: ~/ORB_SLAM2/Examples/RGB-D

Start processing sequence ... Images in the sequence: 1352

How does latency affect the AR display? User B's View

User A's View (Ground Truth)

Case (a): Without information sharing, no holograms appear

Case (b): With slow tracking, holograms may appear later

Case (c): With slow map merging, holograms may appear inaccurately placed

Networked Systems Group UC RIVERSIDE

GPU assist: How does the GPU help?

- Search Local Points is time-consuming → SLAM-Share exploits parallel threads ^E
- ORB-Extraction is time-consuming → SLAM-Share exploits GPU parallelism
- Overall, SLAM-Share reduces tracking time by more than 40% compared to ORB-SLAM3 run in CPU only

OS3 = ORB-SLAM3 S-Sh = SLAM-Share

Server Contact Lost!

12 - 10 - 2 8 - 6 - 4 -	5		IU-based ing ends	4 IMU-based tracking start		
2 1		Trajectory Start/End		ground truth — – IMU Tracking		
-5 0 5 10 x [m]						
RTT (ms)			IMU-Tracking region			

- Once server contact restored
 - Client merges IMU + SLAM pose
- Evaluation: IMU-based tracking is accurate for a short time
 - But long term IMU-based tracking accumulates errors

RTT (ms)	IMU-Tracking region ATE RMSE (cm)	
0 (Baseline)	2.41	
90	2.45	
200	2.67	
300	2.71	
10000	300	

Networked Systems Group UC RIVERSIDE

Why is map merging needed?

- Map merging fuses the shared information between users
 - Map merging brings together users' maps and puts them in same "perspective"

- Without map merging, the virtual objects will be misplaced for some users
- With map merging, the virtual objects are at the same place for all users

Does ATE remain low throughout?

- We show a scenario of merging 3 clients' maps with SLAM-Share
- Need low ATE for accurate virtual object placement

How Fast Does SLAM-Share Merge Maps?

- Baseline: multi-user implementation of Edge-SLAM
- Baseline map transfer from client to Edge server adds latency
- SLAM-Share's use of shared memory lowers overheads
- Merging new map to global map is time consuming

15

SLAM-Share incrementally updates the map

Latency breakdown of map update of SLAM-Share and Baseline when performing one Map-Merge between two maps

Component	Baseline (ms)	SLAM-Share (ms)
Serialization (app)	78.1	N/A
Encoding	N/A	3
Map transfer (to server)	66	0.11
Deserialization (app)	390.8	0
Map Merging	2339	190
Map transfer (to client)	6.4	0.1
Load Map (in client)	19.8	N/A
Total	2900.1	193.21

SLAM-Share Map Merge is an order of magnitude faster

Ali AJ, Kouroshli M, Semenova S, Hashemifar ZS, Ko SY, Dantu K. Edge-SLAM: edge-assisted visual simultaneous localization and mapping. ACM Transactions on Embedded Computing Systems. 2022 Oct 29;22(1):1-31.

Is SLAM-Share Accurate When There is Network Delay?

- Comparisons
 - SLAM-Share and baseline
 - With and without added delay

→ SLAM-Share has almost same accuracy despite 300 ms delay

 \rightarrow Baseline suffers from higher short-term inaccuracies with increased delay

CPU Overhead of SLAM-Share vs. Baseline Clients

We evaluated the overall CPU use in SLAM-Share and Baseline clients

SLAM-Share uses less than 1% of single CPU Core

etworked

- SLAM-Share improves key components of Visual SLAM: tracking and mapping
 - Intelligently re-thinks partitioning of SLAM tasks between mobile client and the Edge Cloud
- SLAM-Share exploits GPU-based tracking on the edge cloud
 - Speed up of tracking by more than 40%
- SLAM-Share uses shared-memory on edge cloud to rapidly merge client maps
 - SLAM-Share's Map Merging is an order of magnitude faster
- SLAM-Share achieves high-throughput **multi-user** visual SLAM-Share
 - Very resource/power efficient on client very small CPU and memory consumption
- Open-source code available: https://github.com/network-lab2/slam-share

Networked Systems Group UC RIVERSIDE